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Abstract
Traditional automatic speaker verification (ASV) system

will be greatly affected by spoofing attacks. A series of
ASVspoof challenges is held every two years and dedicated to
anti-spoofing work. This paper describes the system from
XMUSPEECH for Spoofing Aware Speaker Verification
Challenge 2022, which is a new competition related to the
ASVspoof challenge. We propose a fusion strategy based on
score-level fusion. For the task, we evaluate our system on
ASVspoof 2019 LA development set and evaluation set which
greatly improves the performance compared with the
Baseline2. Our best submission obtained 1.155% SASV-EER
on the evaluation set, while the performance on the
development set is 0.723% SASV-EER.
Index Terms: SASV, ASVspoof, Speaker verification,
Fusion-based system, BOSARIS

1. Introduction
Automatic speaker verifification (ASV) systems has improved
dramatically in recent decades, this type of systems aim to
verify the identity of the target speakers given a test speech
utterances. For example, ECAPA-TDNN [1] models for
speaker verifification systems achieves state-of-the-art (SOTA)
performance in this field. However, it could be greatly
affected by spoofing attacks, which contain synthesized,
converted and replayed speech. According to the SASV
official evaluation plan [2], when the SV-EER (speaker
recognition equal error rate) of ECAPA-TDNN encounters a
data set with a large number of unknown spoof speech such as
the 2019 ASVspoof LA evaluation set [3], the system
performance drops sharply from 1.63% to 23.83%. Therefore,
it is necessary to study a good-performance anti-spoofing
countermeasures system as a safety door for ASV systems. At
present, many systems relies on the high-resolution features
and robust models, and they produce ideal effects [4].

Automatic speaker verifification (ASV) is a biometric
authentication task to determine the identification of a speaker
from his or her audios. There are a number of significant
technologies to constantly improve the performance of ASV
systems, such as joint factor analysis (JFA) [5], i-vector based
frameworks [6], end-to-end (E2E) [7] and deep embedding
frameworks [8]. However, ASV systems have been
encountering the spoofing attacks from the advanced speech
synthesis algorithms and high fidelity replay devices.
Currently, there are four known spoofed attacks, including
accent mimic, text-to-speech (TTS), voice conversion (VC)
and replay attack [9][10]. And in the speech community
enables, many researchers have been developing the anti-
spoofing countermeasure (CM) systems from two directions,
including feature engineering and binary classifier [11]. The

feature engineering focuses on researching high time-
frequency resolution acoustic features to capture the hidden
and unnatural signs processing, namely the spoof cues. On the
other hand, effective classifiers have been developed to
accurately discriminate the bonafide and spoof speech.

The rest of this paper is organized as follows. In Section
2, we briefly introduced the relevant information of ECAPA-
TDNN, AASIST, as well as our multi-task system. Section 3
includes our experiments and results. Finally, Section 4
concludes the paper and indicates the future work.

2. System Description
For the challenge, inspired by the system from the team of Y
Zhang et al [12], we adopt the similar system settings and the
same dataset without any extra data other than score-level
fusion method. The initial system sums the scores produced by
the separate systems, we replace addition with multiplication
and make a great improvment on the evaluation set and
development set for SASV-EER. Based on this, we use the
BOSARIS toolkit [13] to fuse multiple system’s scores.
Surprisingly, the three EERs calculated by the fused scores
can be improved to some extent, compared with the original
independent systems.

Baseline1 simply sums the score from ASV system and
CM system to generates the final SASV score, as formula ( 1 )
shows. There is great numerical variation between the scores
of these two systems in backbone network. Thus, we have a
try to replace addition with multiplication, and generates the
final SASV score, as formula ( 2 ) shows. The final score
make a great improvment, as shown in Table 3 ID 6.

SVcm SSS +=fusion ( 1 )

SVcm SSS *=fusion ( 2 )
First of all, when it comes to the ECAPA-TDNN network,

it achieved great success in speaker verifification in these
years. This model use 1024 feature channels to expand
network scale. In the SE-Block of the bottleneck, 256 is set as
the size. The front-end feature extractor is followed by an
attentive statistics pooling layer [14] that calculates the mean
and standard deviations of the fifinal frame-level features. We
adopt this SOTA ASV model as our ASV system to extract
192 dimensions vector for enroll utterances and test utterances.

Secondly, AASIST [4] is also used as the backbone
network in the Baseline1 and Baseline2. AASIST has a graph
attention network and a RawNet2 based encoder. The system
uses the original waveform as the input information to learn
the meaningful high-dimensional spectral time-domain feature
map, and then extracts the graphic nodes of the feature map in
time-domain and frequency-domain separately. Using the
stack nodes that learn information from all nodes, the final
output CM embedding is realized by connecting the average



and maximum values of each node. And we adopt this
advanced CM model as our CM system to extract 160
dimensions vector for test utterances.
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As for our multi-task system, the frame level information
in the front network layer is shared, however, when the
network processing segment level information, two branches
are divided. The left branch learns speaker classification and
the right branch learns bonafide and spoof speech
classification. The loss functions on both sides are softmax
loss, as shown in formula ( 3 ). The loss function on the left is
Lspk, and the loss function on the right is Lspoof , as shown in
formula ( 4 ). We adopt the strategy of multi-task learning, and
use the sum of spk-loss and spoof-loss as the joint loss
function to optimize the network parameters. Besides, more

configuration information of multi-task system is shown in
Table 1.

Figure 1: Multi-task system structure.

Table 1: Specific configuration of multi-task system.
Layer number Layer name Delay parameters Frame number Node number

1 Frame1 {t-2,t+2} 5 512
2 Frame2 {t-2,t,t+2} 9 512
3 Frame3 {t-3,t,t+3} 15 512
4 Frame4 {t} 15 512
5 Frame5 {t} 15 1500
6 Statistical pooling [0,T) T 3000
7 Segment6 {0} T 512
8 Segment7 {0} T 512
9 Softmax {0} T Speaker number
7 Segment6 {0} T 512
8 Segment7 {0} T 512
9 Softmax {0} T 2

Similar to the score combination method in SASV
Baseline 1, we implemented a triple-system score-level fusion
model, which effectively combines the classifification scores
of ASV and CM systems and decreases SASV-EER to 1.155%
on the 2019 ASVspoof LA evaluation set.

3. Experiment
All datasets we used for training and validation are
ASVspoof2019 [3] LA train partition, ASVspoof2019 LA
development partition, and VoxCeleb 2 [15] as requested by
the organizers.The ASVspoof2019 LA database consists of
12,483 bonafide and 108,978 spoof audios. The number of
total speakers is less than 100, and the database contain 6
known spoofing attacks in the train and development
partitions and 11 unseen spoofing attacks in the evaluation
partition [3], therefore, it was generally only used for speech
anti-spoofing. The VoxCeleb 2 database was widely used for
ASV training, which contains far more audios and speakers
than ASVspoof2019 LA database.

SASV-EER represents the equal error rate between target
samples, nontarget samples and spoof samples, which is set as
the main measure. SPF-EER and SV-EER were used as
secondary indicators. SPF-EER measure only consider target
samples and spoof samples, and SV-EER measure only

considers target samples and nontarget samples, the specific
difference is shown in Table 2.

Table 2: Description of EERs.
Target Nontarget Spoof

SASV-EER + - -
SV-EER + -
SPF-EER + -

As for our multi-task system, we adopt the strategy of
multi-task learning, and use the sum of spk-loss and spoof-loss
as the joint loss function to optimize the network parameters.
We extracted 80 dimensions for fbank feature, and set the
training cycles for 21 epochs, batch_size is 512, learn_rate set
to 0.001, use Adam optimizer, and use a single A40 GPU,
weight_ Decay is 0.3.

The fusion of systems which include ID 7 and 8 could
obtain 0.56% SASV-EER and 0.88% SV-EER on the
development set obtained 1.16% SASV-EER, which achieved
the best result in the Table 3.

BOSARIS toolkit plays a important role for our system.
This toolkit provide score calibration based multi-system, and
the parametric solution usually performs better on independent
test data. Before fusion, our multi-task system only obtained
11.38% SASV-EER on the evaluation set, and 11.60% SASV-
EER on the development set. But after the fusion of systems



include ID 5, 7 and 8 in Table 3, the fusion score obtained
1.16% SASV-EER on the evaluation set, and 0.72% SASV-
EER on the development set, which is better than any of them.
Before joining our system, the dual system fusion can not get

a better score. Therefore, we can infer that our multi-task
system can provide complementary information with the other
two systems, so we can get a better score result after fusion.

Table 3: The results of SASV Challenge.

ID Model
DEV EVAL

SASV-
EER(%)

SV-
EER(%)

SPF-
EER(%)

SASV-
EER(%)

SV-
EER(%)

SPF-
EER(%)

1 ECAPA-TDNN [16] 17.38 1.88 20.30 23.83 1.63 30.75
2 Baseline1 [2] 13.07 32.88 0.06 19.31 35.32 0.67
3 Baseline2 [2] 4.85 12.87 0.13 6.37 11.48 0.78
4 Our Baseline2 4.78 12.80 0.10 6.33 11.32 0.80
5 Multi_task 11.60 9.761 12.19 11.38 8.36 12.41

6
Baseline1 with

multiplication for score-
level fusion [12]

2.16 4.18 0.20 2.89 4.28 0.89

7 pr_s_f [12] 1.09 2.02 0.07 1.53 1.96 0.80
8 Baseline1_s_i [12] 1.69 2.56 0.07 2.45 3.09 0.76
9 Fusion of ID 7 and 8 0.56 0.88 0.07 1.84 2.42 0.93
10 Fusion of ID 5, 7 and 8 0.72 1.39 0.07 1.16 1.49 0.77

4. Conclusions
It can be seen from the score part in the Table 3 that the
simple summation method performs poorly due to the
different score distribution of different systems. This problem
can be effectively solved by standardizing and multiplying
fractions using Sigmoid functions. It is surprising that a simple
strategy can improve the SASV performance a lot. We
proposed a simple but effective fusion-based method for
spoofing aware speaker verification (SASV). The result
suggests that the multiplication for score-level fusion has a
better discrimination ability. In the future, we will further
explore the differences between the various fusion strategies
and improve our multi-task system.
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