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Abstract
This reports describes the proposed integration system for the
spoofing-aware speaker verification (SASV) challenge. Our
proposal mainly consists in the computation of a spoofing score
using the speaker verification and spoofing embeddings (com-
puted from dedicated networks) of the test utterance. This
score is combined with the speaker verification score to obtain a
spoofing-aware speaker verification score. The integration net-
work is trained using a one-class loss function to focus on tar-
get trials. Our proposed system is evaluated in the ASVspoof19
database, showing competitive performance in comparison with
other integration approaches.
Index Terms: speaker recognition, antispoofing, one-class
learning

1. Introduction
Recent advances in deep neural network (DNN) architectures
had led to significant improvements in the performance of
speaker verification (SV) systems [1, 2, 3]. In parallel, similar
advances have increasingly allowed the use of more sophisti-
cated spoofing attacks that may include speech synthesis, replay
attacks, or voice conversion. To deal with them, countermeasure
(CM) systems have continuously integrated new approaches in
increasingly complex spoofing attacks scenarios [3, 4]. Inte-
grated SV-CM systems usually suffer significant performance
degradation and are currently hot topic research in the context
of biometric security systems [5, 6, 7, 8].

The Spoofing Aware Speaker Verification (SASV) Chal-
lenge 2022 aims to improve State of the Art (SOTA) robust-
ness to both zero-effort impostor access attempts and spoofing
attacks [9]. The SASV challenge focuses on evaluating the per-
formance of integrated systems where both CM and SV subsys-
tems are optimized together to improve the reliability of the full
system in both scenarios. This closer to reality scenario is much
more challenging and less explored than dealing with isolated
cases of one type of attack.

The challenge baselines are based on the AASIST system
[3], trained on ASVspoof2019 LA train partition [10], for CM,
and ECAPA-TDNN [11] trained on VoxCeleb2 [12] dataset, for
SV. AASSIST builds upon RawNet2-based encoder [13] to ex-
tract high-level representations from raw waveform inputs to
feed a graph attention network [14] used for the extraction of
CM embeddings. Meanwhile, ECAPA-TDNN is based upon
Res2Net architecture [15] with a squeeze-excitation module to
model channel interdependencies [16].

The goal of the challenge is to assess the performance of
a joined system using an equal error metric (EER) without
distinguishing between different speaker access or spoofed ac-
cess attempts (SASV-EER). Besides, the system performance is
also studied with more granularity considering a subset of tar-
get and non-target trials to estimate speaker verification perfor-

mance (SV-EER) and another subset of spoofing attacks (SPF-
EER). Only data from ASVspoof 2019 [10] and VoxCeleb 2
[12] dataset can be used for training and testing the systems,
while results are performed on the ASVspoof 2019 evaluation
partition. Two baseline systems are provided at the beginning
of the challenge based upon the same pre-trained ASV and CM
subsystems. Baseline1 sums the scores produced by the subsys-
tems, yielding poor performance. On the other hand, Baseline2
is more elaborated, relaying on a three hidden layer fully con-
nected neural network feed with three embeddings: two of them
extracted from ECAPA on the enrolment and test utterances,
while the third is extracted from AASIST test utterance.

In this work, we report an integrated system based upon the
pre-trained AASIST and ECAPA-TDN models. First, a feed-
forward vanilla neural network is trained to compute the cosine
similarity between genuine speech and spoofing embeddings in
order to obtain a spoofing score. Then, this score is linearly
combined with the speaker verification score to obtain the fi-
nal SASV score. With this approach, the SASV-EER is rela-
tively reduced by 87% compared to Baseline 2, reporting a final
SASV-EER of 0.84 %.

The remainder of this report is organized as follows. First,
in Section 2, we detail the proposed spoofing-aware integration
system. Then, in Section 3 the experimental framework and
discussed results are presented. Finally, main highlights and
conclusions are discussed in Section 4.

2. Proposed system
We propose an integrated SASV system based that combines
an integration network followed by a combination of SV and
SASV scores. First, the integration network uses the embed-
dings from the test utterance to compute a spoofing score, and
then, this score is combined with the speaker verification (SV)
score to obtain the final spoofing-aware speaker verification
(SASV) metric.

Let us consider two different base systems trained for anti-
spoofing and SV respectively, that compute a single embedding
per utterance. Thus, we define ysv as the SV embedding of the
enrollment utterance, while xsv and xspf are the SV and spoof-
ing embeddings from the test utterance, respectively. The SV
score is directly obtained as the cosine similarity between the
SV embeddings as Ssv = cos(ysv,xsv) ∈ [−1, 1].

Our objective is to compute a spoofing score for the test ut-
terance that considers both embeddings from the base systems.
Hence, we propose an integration network fed with the concate-
nation of both embeddings test: xsv and xspf. This network is
similar to Baseline2 system of the SASV challenge, and it in-
cludes three feed-forward layers with LeakyReLU activations
and 256, 128, and 64 hidden units, respectively. A batch nor-
malization layer is added at the input of the deep neural network
(DNN) to improve convergence during training by regularizing



the variance of the embedding units. Moreover, a linear layer
is placed after the feed-forward layers to compute a new 64-
dimension spoofing embedding espf. Finally, a spoofing score
is computed using the cosine similarity as Sspf = cos(w, espf),
where w is a vector network parameter representing the direc-
tion of genuine speech in the embedding space.

Finally, the SASV score can be obtained as a linear combi-
nation of the previously computed scores as follows,

Ssasv = αSsv + Sspf, (1)

where α is a scalar value optimized during the network training
phase. The integration network is trained to compute high Ssasv

for target genuine trials. Inspired by previous works [17, 18],
we use a one-class softmax loss function to focus on the target
class. Given a batch of N trials, the loss is computed as

LOCS =
1

N

N∑
n=1

log
(
1 + eβ(mzn−Ssasv,n)(−1)zn

)
, (2)

where n is the batch trial index, z = 0 for the target class and
one otherwise (non-target and spoof classes), β is a scale factor
and mz is a class-depending margin.

The idea behind our proposal is that a better spoofing score
can be obtained when considering both the information con-
tained in the SV and antispoofing test embeddings. Preliminary
experiments considering other approaches –including only the
spoofing embedding or the three different embeddings– yielded
higher errors, supporting our previous hypotheses. While the
use of the SV test embedding allows more robust decisions, the
enrollment SV embedding does not yield improvements but de-
grades the performance of the integration system. On the other
hand, the SV score is explicitly considered in the final score
calculation. This allows the integration system to focus on es-
pecially difficult spoofing attacks (those that yield to high SV
scores), while the SV information helps to discriminate them
from zero-effort impostors and weaker attacks for the SV sys-
tem. This strategy is also explored in [8], but instead of follow-
ing a probabilistic framework we linearly combine the SV and
spoofing scores, obtaining better results.

It is worthwhile to notice a relevant feature of our proposed
system with respect to other integration approaches, as the one
followed in Baseline2: the modularity of the SV system. Our
system does not require the enrollment embedding to be pro-
cessed by the integration network because the SV score is di-
rectly used in the final SASV score. Therefore, this system
is compatible with different homomorphic encryption schemes
[19], that allow certain operations as cosine similarity or linear
score combination in the encrypted domain. Thus, the enroll-
ment embeddings can be kept encrypted in the biometric sys-
tem database, preventing unauthorized users to access private
biometric information.

3. Experimental results
In this section, we describe the experimental framework and
results obtained during the evaluation of our proposed system.

3.1. Experimental framework

Our proposed spoofing-aware speaker verification system
is evaluated in the logistic access (LA) partition of the
ASVspoof19 [10] database. The database is derived from the
VCTK corpus [20], and it includes both bonafide speech and

spoofing utterances generated by using different speech syn-
thesis and voice conversion algorithms. The database is split
into training, development, and evaluation subsets with non-
overlapped speakers. Both the development and evaluation sub-
sets include protocols for the evaluation of automatic speaker
verification systems with spoofing attacks. Therefore, there are
three different kinds of trials: target –bonafide test utterance
from the same speaker as the enrollment one–, non-target –
bonafide test utterance from an impostor speaker–, and spoof
–synthetic test utterance–.

The base verification and antispoofing systems are the same
as the ones used in the challenge baseline, that is, an ECAPA-
TDNN for SV [11], trained using VoxCeleb2, and the AASIST
network for antispoofing [3], trained using ASVspoof19.

The parameters selected for the loss function were β = 20.
m0 = 0.9 and m1 = 0.2. The model was trained using the
Adam optimizer [21] with a learning rate of 1e−4. A mini-
batch of 24 trials was used. The architecture was trained during
20 epochs and the model with the best EER in the development
set is kept for evaluation.

Our proposal is evaluated in terms of three different EER:
SV-EER –target vs non-target trials–, SPF-EER –target vs spoof
trials–, and SASV-EER –target vs non-target and spoof trials–
. We compare our proposed system with the Baseline2 inte-
grated network and the probabilistic fusion framework proposed
in [8]. Moreover, we also evaluated two additional integration
approaches:

• A cascade antispoofing - SV approach that first de-
tects spoofing utterances –spoofing score under a given
threshold– and then computes the SV score. In this con-
figuration, the threshold is selected by minimizing the
error in the development set.

• A logistic regression approach that combines base sys-
tems SV and spoofing scores to compute a SASV score
as the probability of being a target trial. The logistic re-
gression is trained using the scores in the development
set trials.

All the evaluated integration systems are based upon ECAPA-
TDNN and AASIST respectively for SV and antispoofing tasks
.

3.2. Results

It is now worth discussing the breadth and depth of the obtained
results. Table 1 shows the EER obtained for the three evaluated
tasks both for the the development and evaluation ASVspoof19
subsets. It is observed that our proposal outperforms the other
methods, achieving the lowest EER in the three different eval-
uations tasks and in two tasks of the development development
set. Overall, the results on the evaluation set are a 0.84% of
SASV-EER, a 0.58% of SPF-EER and a 0.97% of SV-EER.
The different spoofing-aware approaches perform better than
the SV ECAPA baseline, but with different behavior. For exam-
ple, the Baseline2 obtains competitive results for spoofing de-
tection –0.65% of SPF-EER– but degrades the SV performance
–11.29% of SV-EER–. Both cascade and logistic regression ap-
proaches are optimized in the development set where they ob-
tain good results –1.08% and 1.68% SASV-EER respectively–
, but significantly degrade in the evaluation set –4.44% and
2.55% SASV-EER respectively–. This is especially true for the
cascade system, where the spoofing threshold is not optimal for
the evaluation set. The proposed system in [8] obtains compet-
itive results all evaluation tasks –1.94%, 0.80% and 1.53% for



Table 1: EER (%) results of our proposed integration system on ASVspoof 19, both development and evaluation sets. The results for
the baseline systems and other approaches are also shown for comparison purposes.

System
Development Evaluation

SV-EER SPF-EER SASV-EER SV-EER SPF-EER SASV-EER

ECAPA (SV) [11] 1.86 20.28 17.37 1.64 30.76 23.84

Cascade SPF-SV 1.89 0.42 1.08 1.64 6.59 4.44

Logistic regression 2.70 0.67 1.68 2.55 2.52 2.55

Baseline2 [9] 9.58 0.12 4.04 11.29 0.65 6.24

Zhang et al. [8] 2.02 0.07 1.10 1.94 0.80 1.53

Proposed system 1.08 0.13 0.54 0.97 0.58 0.84

SV, SPF and SASV respectively–. Nevertheless, the SV and an-
tispoofing performance are still lower than the ECAPA model
in SV-EER. Our proposed approach does not only perform bet-
ter than previously published methods, but it also reduces the
SV-EER of the ECAPA system while keeping spoofing detec-
tion performance similar to AASIST subsystem. This shows
that our proposal can effectively exploit the information in the
test embeddings along the SV scoring to obtain a competitive
integrated spoofing-aware speaker verification system.

4. Conclusions
In this work, we have presented our proposed spoofing-aware
speaker verification system for the SASV challenge. Our pro-
posed integration network exploits the SV and spoofing embed-
dings of the test utterance to compute a robust spoofing score.
The final SASV score is obtained as a linear combination of the
SV score and the new spoofing score. The model is trained to
compute higher scores for target trials using a one-class softmax
loss function. Our proposed method shows competitive results
in the ASVspoof19 development and evaluation sets, outper-
forming other spoofing-aware approaches, and performing sig-
nificantly better than the base systems in the SV and spoofing
detection tasks. As future work, we will test other base sys-
tems combined with our integration network, as well as differ-
ent training strategies.
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