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Abstract
This paper presents UR-AIR spoofing aware speaker verifica-
tion (SASV) system submission to the SASV challenge 2022.
The challenge aims to encourage the integration of automatic
speaker verification (ASV) and spoofing countermeasure (CM)
subsystems to improve the performance of ASV systems when
they are exposed to spoofing attacks. We adopt a probabilis-
tic fusion framework on top of pre-trained and fixed speaker
embeddings and CM embeddings. We also describe our model
implementation for joint optimizing the system under the prob-
abilistic framework. The best single model in our experiments
achieves a SASV-EER of 1.01% and 1.34% on the official de-
velopment and evaluation trials, respectively.
Index Terms: spoofing aware speaker verification, spoofing
countermeasure, probabilistic framework

1. Introduction
Automatic speaker verification (ASV) systems are vulnerable to
spoofing attacks, where synthesized or replayed speech is pre-
sented to deceive the system on the speaker identity [1]. Spoof-
ing countermeasure (CM) systems aim to detect whether the
speech is bona fide, i.e. natural speech from humans. Recent
progress has been made on a standalone CM [2, 3, 4, 5] and
the best performing CM system can achieve an equal error rate
(EER) of less than 1%. However, there CM is considered as a
separate task and the improvement of CM may not benefit ASV
since the two systems are not jointly optimized.

The SASV challenge [6] aims to build the gap between
ASV and CM and encourage the joint optimization of the sys-
tems. The dataset is built on ASVspoof 2019 LA, where spoof-
ing attacks are presented. The SASV task is a binary classifi-
cation problem that aims to discern whether the test utterance
is bona fide speech of the target speaker. Same as ASV, some
bona fide utterances are provided to register the speaker in the
enrollment stage. Positive labels represent the target class, i.e.
the test utterance belongs to the target speaker and is bona fide
speech. For negative labels, there are two cases: the non-target
class, the test utterance is bona fide speech from a speaker other
than the target speaker; the spoof class, where the test utter-
ance is spoofing attacks. The challenge uses SASV-EER as the
primary evaluation metric.

In this work, we employ our probabilistic fusion framework
previously proposed in [7] to map the scores from ASV and CM
subsystems to probabilities and calculate the posterior probabil-
ity as the final score for SASV. We also report score average fu-
sion results for different systems. Our best performing system
achieves 1.34% SASV-EER on the evaluation trials, surpassing
the baselines by a large margin.

2. Probabilistic Fusion Framework
In this section, we elaborate on our probabilistic fusion frame-
work proposed in [7]. Suppose we have speaker embeddings

xt
ASVxe

ASV xt
CM

yt
ASV yt

CM

yt
SASV

Embeddings

Subsystem Decisions

Joint Decision

Figure 1: The belief network of our proposed probabilistic fu-
sion framework for SASV. The embeddings are computed from
pre-trained and fixed ASV and CM embedding networks. “e”
and “t” denote for enrollment and test, respectively.
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spectively, computed by the ASV subsystem; and we also have
access to the CM embedding xt

CM of the test utterance, com-
puted by the CM subsystem. We aim to calculate the posterior
probability of the test utterance belongs to the target class, as
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cate the ground-truth positive and negative labels as introduced
in Section 1.

As our SASV system is a fusion of ASV and CM subsys-
tems, we denote the underlying ground-truth labels from the
ASV and CM aspects as yt

ASV and yt
CM ∈ {0, 1}. The positive

label yt
ASV = 1 indicates that the test utterance belongs to the

target speaker, whereas the positive label yt
CM = 1 means the

test utterance is bona fide speech.
Figure 1 shows the belief network for our proposed proba-

bilistic fusion framework. The joint decision of SASV is made
by fusing the decisions from the ASV and CM subsystems. By
definition, yt

SASV = 1, if and only if yt
ASV = 1 and yt

CM = 1.
Thus, we derive the posterior probability as follows:

P (yt
SASV = 1|xe

ASV, x
t
ASV, x

t
CM)

=P (yt
ASV = 1, yt

CM = 1|xe
ASV, x

t
ASV, x

t
CM)

=P (yt
ASV = 1|xe

ASV, x
t
ASV, x

t
CM)P (yt

CM = 1|yt
ASV, x

e
ASV, x

t
ASV, x

t
CM)

=P (yt
ASV = 1|xe

ASV, x
t
ASV)P (yt

CM = 1|yt
ASV, x

t
CM).

(1)
The second equality is based on the chain rule and it treats yt

ASV
as a condition. The last equation follows from the fact that
yt
ASV is independent from xt

CM and that yt
CM is independent

from xe
ASV and xt

ASV , as we use pre-trained ASV and CM sub-
systems. It could be counter-intuitive that the prediction of the
CM subsystem depends on that of the ASV subsystem. A better
way to interpret is by assuming conditional independence be-
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Figure 2: Model structure for implementation of our proposed
framework. Colored boxes represent the embeddings and the
bordered boxes denote the operations. The dashed border de-
notes that the FC layer is trainable. Borderless symbols repre-
sent the outputs or intermediate outputs.

tween yt
ASV and yt

CM and then slack it. Further details can be
referred to in [7].

3. Model Implementation
We implement the SASV system based on our probabilistic fu-
sion framework. We employ the posterior probability as the
final decision score for the SASV system.
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3.1. Model Structure

The structure of our model is shown in Figure 2. The ASV
subsystem computes the cosine similarity between the speaker
embeddings xe

ASV and xt
ASV, as the ASV score SASV ∈ [−1, 1].

We then perform a linear function f(s) = (s + 1)/2 to mono-
tonically map the score to fit the probability range of [0, 1]. As
such, we define
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For the CM subsystem, we use a fully-connected (FC) layer to
map the CM embedding to a score and then apply the Sigmoid
function to ensure the output is in the range of [0, 1]. We assign
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Note that we ignore the FC layer followed by the CM embed-
ding in the original pre-trained CM subsystem, which is dif-
ferent from the Baseline1 method in [6]. Our FC layer can be
interpreted as a re-initialization of that FC layer. The decision
of yt

CM is dependent on yt
ASV since we train the FC layer with

the information from the ASV branch. The training details is
described in the next subsection.

Combining Eq. (1)-(4), the final decision score for our
SASV system is denoted as:

SSASV = f(SASV)× σ(SCM). (5)

3.2. Training details

Both the ASV and CM embedding network is pre-trained and
fixed, hence the ASV score SASV is fixed. Only the FC Layer
on top of the CM embedding network is trained. We train the
system with a prior-weighted binary cross-entropy loss for the
joint decision score SSASV and we set the prior probability for

Table 1: Four kinds of EERs for evaluation (Adapted from [6]).
“+” denotes the positive class and “-” denotes the negative
class. A blank entry denotes classes not used in the metric.
SASV-EER is the primary metric for the SASV challenge.

Evaluation metrics Target Non-target Spoof
SASV-EER + - -

SV-EER + -
SPF-EER + -
CM-EER + + -

a target trial as 0.1. Therefore, the system is jointly optimized
to fit the SASV ground-truth binary labels. The dependency of
yt

CM on yt
ASV is thus realized by training the FC layer conditioned

on the ASV output score.

Regarding the training data, we randomly select pairs of
utterances from the training set of the ASVspoof 2019 logical
access dataset and assign SASV labels by definition.

4. Experimental Results

In our experiments, we train our systems using Adam optimizer
with an initial learning rate of 0.00003. The batch size is set
to 1024. We train the model for 500 epochs and select the best
epoch according to the SASV-EER on the development trials.
The model in the best epoch is used for final evaluation. For
evaluation on the official development and evaluation trials, our
system’s output decision scores are calculated with Eq. (5) and
we then calculate the EERs in Table 1 for two sets of trials,
respectively. Note that we also observe the CM-EER as it is the
standard evaluation metric for CM systems, but excluded in the
SASV challenge.

4.1. Performance of single systems with our method

We train and evaluate eight of our SASV systems by varying the
random seed. The random seed controls (1) the random selec-
tion of pairs from the training data (2) the random initialization
of the FC layer. As shown in Table 2, the system performance
varies according to random seed. This observation is similar to
anti-spoofing as observed in a comparative study [8]. The best
performing system achieves a SASV-EER of 1.01% and 1.34%
on the development and evaluation trials, respectively.

Comparing different random seeds, in general, a better
SASV-EER is originated from a better SV-EER, showing that
it is important to discriminate the speaker identity. However, on
the CM aspect, a better SPF-EER or CM-EER may not result
in a better SASV-EER. The CM-EER of the best-performing
system is extremely high compared to the other systems. This
shows that optimizing the CM subsystem and achieving a lower
CM-EER might not benefit the SASV system. This observation
might be of interest to the CM community.

4.2. Fusion of single systems

We also experiment with score average fusion for different sin-
gle systems to try to improve the performance. The fusion re-
sults is shown in Table 3. The fusion of single systems did not
generate better performance than single systems.



Table 2: Comparison among different single systems of our pro-
posed methods with varying the random seed. In each cell,
we report the EER on the development trials (top) and that on
the evaluation trials (bottom). The results of eight training-
evaluation rounds are sorted by the SASV-EER on the devel-
opment trials from high (I) to low (VIII).

Seed SASV-EER SV-EER SPF-EER CM-EER

I
1.12
1.56

2.02
1.97

0.07
0.82

0.69
2.00

II
1.11
1.56

2.02
1.94

0.07
0.82

0.65
2.12

III
1.11
1.53

2.02
1.94

0.07
0.81

0.69
2.21

IV
1.11
1.49

2.02
1.88

0.07
0.80

0.62
2.27

V
1.08
1.56

1.95
1.94

0.07
0.87

0.66
2.45

VI
1.08
1.51

2.02
1.92

0.07
0.82

0.62
2.14

VII
1.08
1.48

2.02
1.92

0.09
0.80

0.76
2.63

VIII
1.01
1.34

1.75
1.70

0.20
1.08

11.84
18.16

Table 3: Results for score average fusion of single systems in
Table 2. In each cell, we report the EER on the development
trials (top) and that on the evaluation trials (bottom).

Fusion SASV-EER SV-EER SPF-EER CM-EER

I+II+III
1.11
1.56

2.02
1.94

0.07
0.81

0.69
2.10

V+VI+VIII
1.08
1.51

2.02
1.94

0.07
0.82

0.68
2.36

All
1.14
1.49

2.02
1.94

0.07
0.82

0.70
2.40

4.3. Our system submission

We submit the single system with seed VIII in Table 2 since it
achieves the lowest SASV-EER with 1.01% on the development
trials. It achieves 1.34% SASV-EER on the evaluation trials.

We acknowledge that the random seed for our submitted
single system could be a lucky number since it achieved the
unusually best performance, compared to other random seeds.
However, the other single systems in Table 2 all outperform
the baselines in [6] by a large margin. We demonstrated the
comparison of methods and performed an ablation study in [7],
verifying the effectiveness of our proposed probabilistic fusion
framework.

5. Conclusions
In this paper, we introduced UR-AIR system submission for the
SASV challenge 2022. We adopted our previously proposed
probabilistic fusion framework and trained a fully-connected
layer to fuse the pre-trained and fixed ASV and CM embed-
dings. Our training method directly optimizes the joint SASV
confidence score. Our submitted single system achieved 1.34%
SASV-EER on the official evaluation trials.
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