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Abstract

Automatic Speaker Verification (ASV) system is a type of bio-

metric authentication. It can be attacked by intruder, who

falsifies data in order to get access to protected information.

Countermeasures (CM) are special algorithms that detect this

spoofing-attacks. While ASVspoof Challenge series were fo-

cused on development of CM for fixed ASV system, new Spoof-

ing Aware Speaker Verification (SASV) Challenge organizers

believe that best results can be achieved if CM and ASV sys-

tems are optimized jointly [1].

One of approaches for cooperative optimization is a fusion

over embeddings or scores obtained from ASV and CM models.

Baselines of SASV Challenge 2022 present 2 types of fusion:

score-sum and back-end ensemble with 3-layer MLP. This pa-

per describes our research of other fusion methods, including

boosting over embeddings, which has not been used in anti-

spoofing studies before.

Index Terms: SASV Challenge 2022, Countermeasure, Auto-

matic Speaker Verification, Fusion

1. Introduction

Automatic Speaker Verification (ASV) system is a biometric

authentication method working with humans’ speech. As any

type of protection it may be susceptible to tampering, called

spoofing-attacks, which can be classified into 4 kinds: imper-

sonation, voice conversion (VC), replay attacks and text-to-

speech (TTS) [2]. There are two possibilities, how to deal with

spoofing-attacks. First of them is improve reliability of ASV

systems. Second – use specialized algorithms, called counter-

measures (CM), which detect unauthorized access.

ASVspoof initiative and first ASVspoof Challenge 2015

were created in order to standardize research in the field, met-

rics and databases [3]. This competition was held 4 times in

2015, 2017, 2019 and 2021 respectively. Last time it contained

3 tasks [4]:

• Logical Access (LA) task: spoofing data is created by

VC and TTS algorithms and transmitted over telephone

and VoIP networks.

• Physical Access (PA) task: CMs for replay attacks.

• Speech Deepfake (DF) task: combination of other tasks,

but without speaker verification.

New Spoofing Aware Speaker Verification (SASV) Chal-

lenge 2022 is a continuation of ASVspoof series. However, in

ASVspoof CMs work with fixed ASV system. Organizers of

SASV Challenge believe that join optimization of CM and ASV

systems can lead to more robust models. This paper compares

different approaches for solution for this challenge.

Existing architectures for CM systems can be divided into

two types: ones, which work with raw signal as input, and

ones, which apply time-frequency transforms and create spec-

trograms. In [5] authors showed that spoofing artifacts lie in

different frequency sub-bands rather than in full-band. Because

of that, performance of spectrogram-based methods relies on

used time-frequency algorithm’s resolution in sub-band, where

spoofing attack left marks. Different spectrograms enhance dif-

ferent frequencies, what leads to their contrasting capabilities.

Hence, combining architectures with different front-ends can

result in robust model. Raw-input solutions define which fre-

quencies are helpful by themselves during train stage. How-

ever, their aptitude is still limited. Thus, architecture with great

discriminate power should use fusion over model with different

input types.

Fusion methods appeared in literature are usually done over

scores obtained from different CM models. It was shown

that non-linear types of fusion perform better than the lin-

ear ones [6]. However, average or weighted sum with pre-

normalization are still the most common [1, 7, 8, 9, 10]. Other

appeared methods, where scores from CMs are stacked in one

feature-vector, are presented below:

• Support Vector Machines (SVM) with different type of

kernels: linear, residual basis function (RBF) and poly-

nomial. It was used in [6, 11, 12].

• Logistic Regression was tested by authors of [6, 12, 13]

• Gaussian Mixture Model (GMM) appeared in [6].

• MLP, Decision Tree and Random Forest were used as a

final classifier over future-vectors in [12].

All of this methods, except Decision Tree, are shown to

improve the performance and surpass single model systems.

Fusion over embeddings occurs much less often. Authors

of [14] created Fusion-Layer, which combines outputs of model

sub-parts. SASV Challenge 2022 organizers used 3-layer MLP

with embeddings from both ASV and CM systems [1].

In this paper we explore and compare performance of dif-

ferent fusion methods. Apart from existing solutions, which

mostly use scores, we take embeddings from CM and ASV sys-

tems. Moreover, only one ensemble method of Decision Trees

was applied in anti-spoofing research – bagging (specifically,

Random Forest). We propose usage of another Decision Tree

ensemble method called boosting. Concretely, fusion is done

using CatBoost [15], and it significantly outperforms SASV

Challenge 2022 baselines on all metrics. In addition, we test

usage of Random Fourier Features (RFF) [16] with logistic re-

gression base, which is a RBF SVM approximation method.

The remainder of this paper is organized as follows. Section

2 describes CM and ASV systems, which embedding will be

taken for fusion. Section 3 describes experimental setup, which

results are described in Section 4. Conclusions are presented in

Section 5.

2. CM and ASV systems

This section describes what CM ans ASV systems were used in

experiments.
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Figure 1: Pipeline for fusion over embeddings experiment

2.1. Countermeasure

For CM system we took 5 different models: two with raw input

and three with spectrogram front-ends.

Firstly, we used AASIST [17], which is a baseline CM

subsystem in SASV Challenge 2022. This is spectro-temporal

graph attention network working with raw input. Sending wave-

form through AASIST results in 190-dimensional embedding.

Scores are outputs of last Fully-Connected layer (using softmax

is an option).

Secondly, we adopted RawNet2 [11] architecture to our

training pipeline. Specifically, Dropout layers were added.

RawNet2 was a baseline CM system for ASVspoof Challenge

2021 [4]. It consists of Sinc-layer, ResBlocks and GRU-

layer, ending with two FC-layers. Embeddings are 1024-

dimensional vectors obtained from output of first classifying

FC-layer. Scores comes out the last layer.

Thirdly, we took LightCNN (LCNN) architecture proposed

in [18] with 3 types of input as was done in [19]: STFT, MEL

and CQT spectrograms. This time-frequency transform meth-

ods enhance different frequency sub-bands, which allows to cre-

ate a robust model by combining them. LCNN is a classic CNN

model with Max-Feature-Map operation as activation functions.

Embeddings are outputs of penultimate FC-layer and have 80

dimensions for each type. Scores comes out the last layer.

2.2. Automatic Speaker Verification

For ASV system we used ECAPA-TDNN proposed in [20],

which is also a baseline ASV subsystem in SASV Chal-

lenge 2022. This subsystem consist of Squeeze-Excitation

Res2Blocks, Statistic Pooling and Multi-layer Feature Aggrega-

tion. ECAPA-TDNN returns two 160-dimensional vectors for

enrollment and test utterances respectively. Score is a cosine

similarity between embeddings.

3. Experimental Setup

In this section we describe how we trained our models and used

fusion over them to following evaluation.

3.1. Training Stage

Our ASV system ECAPA-TDNN was pre-trained on Vox-

Celeb2 dataset [21]. It is same to the SASV Challenge 2022’s

organizers ASV subsystem.

All CMs were trained on ASVspoof 2019 LA train partition

[22]. We also took pre-trained AASIST as was done in competi-

tion. However, RawNet2 and LCNN-based models were trained

from scratch and had data preprocessing with data augmenta-

tion.

In DF task of ASVspoof challenge speech waveforms were

encoded and then decoded with different lossy codecs. This

added some distortion into data and complicated detection of

spoofing-attacks. However, in practice compressed audio is

common. So we believe that robust CM, which can be used in

real life situations, should handle this encoding-decoding per-

turbations. For this we added random compression with mp3

and aac codecs as data augmentation.

There is a recent study, which shows that ASVspoof Chal-

lenge Database has very uneven distribution of silence: the

bonafide samples has much longer silences, than many of at-

tacks, especially TTS ones [23]. This leads to a serious prob-

lem: models partially make their predictions based on dura-

tion of silence in data. It was shown that same architectures

learned on samples with trimmed silence get much worse re-

sults. We believe that strong biometric authentication system

has to deal with no silence data and reject samples with hush:

indeed, if somebody wants access to protected information he

or she should provide his or her biometry, and there is no biom-

etry in silence. Therefore, we preprocess data for RawNet2

and LCNN-based models by removing silences using simple

magnitude-based Voice Activity Detection (VAD) algorithm to

improve their detecting spoofing artifacts capabilities.

We trained RawNet2 and LCNN-based models for 30



Table 1: Results of Fusion Methods over embedding on Dev and Eval sets. Best value in column is bold. SASV Challenge 2022

Baselines’ results and ECAPA-TDNN without any CM are at the bottom of the table.

Fusion Method

Metric

SV-EER SPF-EER SASV-EER

Dev Eval Dev Eval Dev Eval

3-layer MLP 48.58 49.08 0.06 0.85 15.88 25.10

Logistic Regression 50.13 50.03 0.17 1.50 16.59 25.41

SVM (Linear Kernel) 49.88 49.33 9.13 16.07 17.70 27.67

SVM (RBF Kernel) 27.02 22.99 0.26 1.32 11.00 12.24

SVM (Polynomial Kernel) 29.14 31.76 7.41 10.70 13.92 19.39

RFF (Logistic Regression Based) 37.53 36.24 2.76 8.73 14.11 21.08

GMM 50.56 49.95 49.90 49.47 50.04 49.64

Random Forest 35.42 32.73 0.06 0.76 13.13 18.16

CatBoost 3.62 3.87 0.06 0.61 2.09 2.90

Score-Sum (Baseline 1) 32.88 35.32 0.06 0.67 13.07 19.31

3-layer MLP (Baseline 2) 12.87 11.48 0.13 0.78 4.85 6.37

ECAPA-TDNN 1.88 1.63 20.30 30.75 17.38 23.83

epochs with Adam optimizer.

3.2. Fusion methods over embeddings

We already discussed why fusion of CMs’ scores with different

inputs is better than the single system. We hypothesize that at

the same manner fusion of CMs with and without silence trim-

ming results in well-performing model, which detects artifacts

and do not make predictions based only on silence duration.

For this study we get embeddings from each sub-model and

concatenate them into one long feature-vector, which is used

as input for final classifier. Then classifier is trained on em-

beddings from train data. RawNet2 and LCNN-based models’

embeddings are taken from preprocessed and encoded-decoded

data. For each LCNN-based model input spectrogram is split

into 3 equal-sized parts. We get embeddings for each part and

stack them together.

Final scores for development and evaluation sets are re-

ceived from trained classifier. We again used same prepro-

cessing and encoding-decoding for RawNet2 and LCNN-based

models.

Resulting pipeline of our system is given in Figure 1. Final

feature-vector is a 2288-dimensional vector of numerical fea-

tures.

Methods tested as final classifier are as follows:

• 3-layer MLP. Same architecture, that was used in SASV

Challenge 2022 Baseline, but with our 2288-dimensional

vector as input: 3 FC-layers with 256, 128 and 64

out features respectively, LeakyReLU with 0.3 negative

slope as activation and one final classifier FC-layer.

• Logistic Regression. Iterations are limited to 1000 (we

also tried bigger value, but it’s performance was worse).

Regular coefficient is λ =
1

m
, where m = 25380 is the

amount of utterances in ASVspoof 2019 LA train parti-

tion. All other parameters are set to default1.

• SVM with Linear kernel. Iterations are limited to 50000,

regular coefficient is λ =
1

m
. All other parameters are

set to default1.

1We used sklearn v.0.24.2 [24]

• SVM with RBF kernel. Iterations are limited to 50000,

regular coefficient is λ =
1

m
. All other parameters are

set to default1.

• SVM with Polynomial kernel. Iterations are limited to

50000, regular coefficient is λ =
1

m
, degrees are set to

7. All other parameters are set to default1.

• RFF with logistic regression. Classifier uses linear prin-

cipal component analysis (PCA) with 1024 dimensions

and Standard Scaler. Number of random features is set

to 5000. Iterations of inner logistic regression are lim-

ited to 50000, regular coefficient is λ =
1

m
. All other

parameters are set to default1.

• GMM. Number of components is set to 2. Amount of

EM iterations is 1000. All other parameters are set to

default1.

• Random Forest. Number of estimators is 1000, all other

parameters are set to default1.

• CatBoost. Number of estimators is 700, all other param-

eters are set to default (We used catboost v.1.0.4 [15]).

3.3. Fusion methods over scores

For completeness of our study we tested if we could improve

the results by doing fusion over scores. First of all, we repli-

cated SASV Challenge 2022 Baseline 2 (it will be called RB2

for shortness). Then we took RB2 and our best model (OBM

for shortness) from embeddings experiment and stacked their

scores for each utterance in one 4-dimensional feature vector.

Then we tested same classifiers, except MLP and RFF, be-

cause of too small input size. For Logistic Regression and

SVM-based methods iterations were unlimited and regular co-

efficient was set to 10000.

4. Results

The results for different fusion methods over embeddings de-

scribed in Section 3.2 are shown in terms of SV-EER, SPF-EER

and SASV-EER in Table 1. Performance of SASV Challenge

2022 Baseline systems and ECAPA-TDNN without any CM



Table 2: Results of Fusion Methods over scores on Dev and Eval sets. Best value in column is bold. RB2, OBM, SASV Challenge 2022

Baselines’ results and ECAPA-TDNN without any CM are at the bottom of the table.

Fusion Method

Metric

SV-EER SPF-EER SASV-EER

Dev Eval Dev Eval Dev Eval

Logistic Regression 3.81 3.57 0.06 0.52 2.20 2.75

SVM (Linear Kernel) 3.81 3.57 0.06 0.52 2.20 2.75

SVM (RBF Kernel) 3.90 3.69 0.06 0.52 2.15 2.79

SVM (Polynomial Kernel) 3.79 3.54 0.06 0.53 2.14 2.77

GMM 8.19 6.75 2.49 2.19 5.53 5.29

Random Forest 7.42 5.37 1.19 0.87 3.63 3.39

CatBoost 6.73 4.87 0.19 0.68 2.83 2.88

RB2 13.38 11.97 0.06 0.68 6.12 6.25

OBM 3.62 3.87 0.06 0.61 2.09 2.90

Score-Sum (Baseline 1) 32.88 35.32 0.06 0.67 13.07 19.31

3-layer MLP (Baseline 2) 12.87 11.48 0.13 0.78 4.85 6.37

ECAPA-TDNN 1.88 1.63 20.30 30.75 17.38 23.83

are at the bottom of the table. SV-EER measures how model

distinguish target and not-target trials. SPF-EER – target and

spoofed trials. SASV-EER is a general metric, where non-target

and spoofed trials are treated equally.

We can clearly see that GMM approach works as a ran-

dom binary classifier. It was expected, because embeddings are

hardly similar to Gaussian vectors. Hence, GMM can not be

used for fusion methods over embeddings.

Unlike the results from [6] where Polynomial SVM outper-

formed RBF and Linear ones, in our experiment SVM with RBF

Kernel shows best of three results. Logistic regression has sim-

ilar results for RBF SVM and Poly SVM in terms of SPF-EER

and SASV-EER respectively, but SV-EER is equal to random

classification. Linear SVM’s quality indicators are poor too.

Reason for such performance of Logistic Regression and Lin-

ear SVM is a linear inseparability of bonafide and non-target

trials, which can be observed by superiority of non-linear ap-

proaches. 3-layer MLP has the same problem, caused by small

train set and narrow layers with large input size.

Random Fourier Features should approximate SVM with

RBF kernel in theory. We can see from the Table 1 that RFF in-

deed has similar performance to SVM methods, but it has much

worse results, than RBF SVM.

Random Forest, which is bagging ensemble method of De-

cision Trees, exceeds the results of Baseline 2 in terms of SPF-

EER and has similar results as Polynomial SVM in other met-

rics. Thus, Random Forest is better than SVM with polynomial

kernel in our study.

Final tested method is CatBoost. It surpasses

all competitors methods in all metrics with a huge

margin in SV-EER and SASV-EER. Moreover, it re-

duces error-rates, obtained by baselines, by a relative

71.8%, 66.28%, 0%, 8.95%, 56.90%, 54.47% for SV-EER,

SPF-EER and SASV-EER on Development and Evaluation

sets respectively. Only single ECAPA-TDNN outperforms

CatBoost approach on SV-EER. It is not surprising because

using countermeasures worsen verification ability.

To further improve the results we took model with CatBoost

fusion method (OBM) and combined it with RB2 in our second

experiment described in Section 3.3. It’s results are presented

in Table 2.

Scores are more likely to be from Gaussian Mixture than

embeddings. GMM approach still deteriorate performance of

best single model, however it is far from random classification.

Hence, GMM is not hopeless as score fusion method.

Logistic Regression and SVM-based methods have alike re-

sults. Polynomial SVM has the best of four performance with

only slightly impairment in terms of SPF-EER and SASV-EER

on Evaluation Set. This four methods outperform OBM on eval-

uation set and slightly worsen on development set. Hence, this

methods work as some kind of regularization.

Both Decision Tree ensemble methods got unsatisfactory

quality indicators, however, they are better than GMM.

Thus, our best results are obtained using SVM with 7 de-

gree polynomial kernel score fusion of RB2 and OBM, which

is a fusion of ECAPA-TDNN, AASIST, RawNet2 and three

LCNN models’ embeddings using CatBoost. This system is our

submission for SASV Challenge 2022.

5. Conclusions

This papers reports a comparison of different fusion methods

over embeddings. Results show that CatBoost approach, which

did not appear in anti-spoofing studies before, outperforms all

other methods by a huge margin. Moreover, we trimmed silence

in audio data for some of our sub-models, what was demon-

strated to worse performance in [23], but still have desirable re-

sults. This indicates how robust is the CatBoost method. Other

fusion over embeddings approaches can still get satisfactory re-

sults, but only for distinction of target and spoofing-trials. They

have poor results on SV-EER and SASV-EER metrics.

However, for fusion over scores everything is different. Lo-

gistic Regression and SVM-based methods outperform best sin-

gle system on Evaluation set and act like a regularization. Ran-

dom Forest and CatBoost did not get great results. Thus, this

methods are better to use with embeddings than scores. Finally,

GMM should be used only as score fusion approach, and it’s

performance highly depend on distribution of scores from sub-

models. In addition, our study confirms that non-linear fusion

methods are better than the linear ones.
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