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Abstract
This paper describes the attentive system proposed for the
SASV 2022 challenge [1]. This challenge is following the
ASVspoof 2019 challenge [2], which goal was to promote
counter measures against spoofing, for automatic speaker ver-
ification systems, both for physical and logical access. Consid-
ering the low equal error rates assured by speaker verification
and counter measure subsystems separately, the SASV chal-
lenge seeks to find the best global EER by using them jointly.
Using the baseline subsystems, we propose a self-weighted fu-
sion system to combine their outputs embeddings and achieve a
1.478% EER for our Spoofing Aware Speaker Verification sys-
tem.
Index Terms: automatic speaker verification, anti spoofing
counter measures, spoofing aware speaker verification

1. Introduction
Over the past years, we have seen steady progress in speech-
based authentication technologies. Automatic speaker verifica-
tion (ASV) systems have reached lower and lower [3, 4, 5, 6,
7, 8] equal error rates (EER [9]), down to less than 0.5% [7, 8].
This progression, as well as the incorporation of microphone
devices in the population, made speech-based authentication us-
ages more and more common through the population, jointly
rising the privacy stakes linked to speech and speech-based sys-
tems.

However, high performances for genuine speakers does not
imply an effective resistance to attackers. The active attempts
to falsify or replay voice characteristics in order to gain unau-
thorized access are referred to respectively as spoofing attacks
or presentation attacks (ISO/IEC 30107-1), and they are cur-
rently one of the biggest threats for voice biometric systems.
To increase the protection against those attacks, Automatic
Speaker Verification Spoofing and Counter measure initiative
gathered the research community around the ASVspoof chal-
lenges, which objectives were to detect spoofing and replay at-
tacks under various conditions. ASVspoof challenges were first
organized in 2015 [10], then pushed further on replay attacks in
2017 [11], logical and physical accesses in 2019 [2] and deep
fakes detection in 2021 [12]. The counter measures (CM) pro-
posed for those challenges can deliver EER of less than 2% [13]
for the detection of spoofing attacks.

The purpose of the SASV challenge 2022 [1] is to further
improve robustness to both naive impostors (by the ASV sys-
tem) and to the spoofing attacks (by the CM system) by making
both systems work together. The related works section presents
the ASV and CM state of the art systems. The data to be used is
set by the challenge, and is going to be presented section 3. The
sections 4 and 5 respectively describe the systems used and the
results obtained. The last section will conclude on our results
and possible future works on the subject.

2. Related works
2.1. Automatic Speaker Verification

Automatic Speaker Verification seeks to differentiate speak-
ers based on their voice. The voice utterances are often pre-
processed into spectral/temporal representations using deter-
minist methods such as the MFCC computation [14] (one of the
main methods used for ASV preprocessing), or more recently,
neural methods such as WavLM [8] (currently gives state of the
art performances).

Then from the bi-modal representations are computed high
dimensional vectors representative of the speaker’s discriminant
characteristics. Such vectors are commonly referred to as x-
vectors, from the first system that presented this architecture [5]
in 2018. The architecture evolved using the ResNet [15] ar-
chitecture, temporal self-attention [16](TDNN system) and a
squeeze-excitation module [7](ECAPA-TDNN system). The
ECAPA-TDNN system trained with 80-dimension MFCC on
VoxCeleb2 [17] has a 0.87% EER [7] on the VoxCeleb1 test
set [18] (presented section 3).

When the ECAPA-TDNN is trained with WavLM [8] pre-
processing instead of MFCC, the test EER on VoxCeleb1 drops
to 0.383% [8]. However, because of the data constraints of the
SASV challenge, we can not use the pretrained WavLM system
for pre-processing, so we will use MFCC for pre-processing.

2.2. Counter Measures

The audio anti-spoofing task is one of the base requirements to
bring a voice-based authentication system to reality. The goal
of the task is to sort genuine (bona-fide) authentication attempts
from spoofing attacks, to improve the global robustness of the
system to attacks. The ASVspoof community was brought to-
gether around a series of challenges [10, 11, 2, 12] about audio
anti-spoofing.

As for ASV systems (see subsection 2.1), Counter Mea-
sure systems proved to behave best when considering both tem-
poral and spectral dimensions of speech utterances [19]. CM
systems first used similar pre-processing (Filter Banks [20]) be-
fore switching to end-to-end systems, using directly the raw au-
dio [21]. The spectro-temporal representations are then com-
puted by the first layers of a RawNet2 [22] adapted for anti-
spoofing. A well used solution for audio anti-spoofing is the
use of separate Graph Attention Networks (GAN [20, 21, 13])
for the spectral and the temporal dimensions of the extracted
representations.

The AASIST model [13] provide state of the art perfor-
mances using those GAN and merging temporal and spectral
graphs with a max graph operation. It achieves 1.13% EER on
detecting the 13 attacks proposed in the ASVspoof LA chal-
lenge 2019 [2].



3. Data
The data used is a fixed parameter of the challenge, we are
meant to use the datasets presented in the table 1.

Table 1: Table of the datasets used for the challenge, with num-
ber of speakers and utterances included in each dataset.

Datasets Speakers Utterances

VoxCeleb 1 test [18] 40 4 874
VoxCeleb 2 [17] 5994 1 045 732

ASVspoof 2019 [23]
LA train partition 20 25 380
LA development partition 20 24 844
LA evaluation partition 49 102 579

The VoxCeleb2 dataset is composed only of bonafide utter-
ances. The ASVspoof datasets are composed of around 10%
bonafide utterances (from the VCTK dataset [24]) and 90%
spoofing utterances, generated using Voice Conversion [25] and
Text To Speech [26] Systems. There are 19 different spoofing
attacks performed using various VC and TTS systems, readers
are referred to [23] for full details.

4. The systems
The system is composed of three subsystems :

1. The ASV subsystem, which produce an x-vector from a
raw speech utterance, containing discriminant data about
the speaker.

2. The CM subsystem, which produce an embedding con-
taining data about the type of spoofing attack happening.

3. The fusion subsystem, which produce a confidence score
(the user is authorized if the score is high enough) from
three vectors :

(a) An enrollment x-vector from an enrollment utter-
ance of the speaker trying to authenticate.

(b) A test x-vector from the test utterance provided.

(c) A CM embedding extracted from the same test ut-
terance.

Those subsystems are described in the following sections, but
the experiments were only conducted on the last subsystem :
the fusion of the scores.

4.1. Automatic Speaker Verification subsystem

For our ASV subsystem, we used MFCC and the ECAPA-
TDNN [7] system proposed in the second baseline of the chal-
lenge [1], as presented section 2. It was pretrained using
the VoxCeleb2 [17] dataset. The results of this system alone
are presented in the table 2. It presents a SV-EER of 1.63%
ASVspoof 2019 LA evaluation dataset [23] (presented section
3). This system outputs x-vectors of dimension 192 from raw
audio.

4.2. Counter Measure Subsystem

For our CM subsystem, we also used the baseline proposed sys-
tem : the AASIST model [13] presented section 2.2, pre-trained
on the LA train partition of the ASV spoof 2019 dataset [23].

This system outputs embeddings of dimension 160 from raw
audio.

To provide an estimation of the CM system performances
alone, we used the second baseline only with the CM outputs,
the results are presented line 2 of the table 2

4.3. Score Fusion subsystem

The Score fusion subsystem takes as input the output of both
previous subsystems, and outputs a 2 dimensional vector, where
the higher of both score determine if the user is accepted or not.
It is trained on the ASVspoof 2019 LA train partition [23] pre-
sented section 3, and evaluated on the development and evalua-
tion partitions. We tried different variations from the baseline2
provided by the challenge [1] : Those are detailed in the follow-
ing subsections, as well as the baseline2.

4.3.1. The Baseline

The baseline system is a multi-layer perceptron (MLP [27]),
taking the concatenate three embeddings as an input (192 ×
2 + 160 = 544 dimensions). It is composed of 4 Layers of
dimensions [544, 256, 128, 64, 2] separated by LeakyReLU ac-
tivation functions. It is trained for 10 epochs with the ADAM
optimizer [28] and a learning rate of 10−4. The baseline param-
eters are presented line 3 of the table 2.

4.3.2. Facilitating the Cosine Similarity

The performances of ASV systems are usually measured using
EER and Cosine similarity. Cosine Similarity, for two embed-
dings of unit norm, is simply the dot product of the two. To help
the system comparing embeddings, we added the element-wise
product of the the x-vectors to the inputs, meaning the input
is now of dimension 736 (= 192 ∗ 3 + 160). This system is
now composed of 4 Layers of dimensions [736, 256, 128, 64,
2] separated by LeakyReLU activation functions. The Cosine
Similarity Facilitation model is presented line 4 of the table 2.

4.3.3. Weighted Fusion

The global authentication system is supposed to let a user pass
following two conditions :

1. If the utterance is not a spoofing attack.

2. If the user is really who he pretends to be.

The first one is determined by the CM subsystem, the second
by the ASV subsystem. We propose to use the embeddings of
both subsystems separately, then merge them. This system is
detailed in the figure 1

First, we compute a score from the ASV embeddings using
a 6-layers MLP (dimensions [192 × 3, 1024, 512, 256, 128,
64, 2], separated by LeakyReLU activation functions), with a
Softmax function at the end, to get a score sASV between 0 and
1. This MLP takes as inputs the two ASV vectors and their dot
product, concatenated.

Then, we compute a score from the CM embedding using
a similar MLP (layers of dimensions [160× 3, 1024, 512, 256,
128, 64, 2]) and get a second score (sCM ) between 0 and 1.
This MLP takes as inputs the CM vector repeated three times
and concatenated.

Finally, we merge those score using a function presented in
the equation 1, with manually chosen coefficients. This function
acts like a parametric AND logical gate : for the result to be



Figure 1: Schematic of the weighted fusion scoring subsystem used in the 4.3.3 section.
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high, both scores needs to be high.

f(sASV , sCM ) =Sigmoid(

(sASV + 0.9)

× (sCM + 0.5)

− 0.3)

(1)

The results of this subsystem are presented line 5 of the table 2.

4.3.4. Trainable Weighted Fusion

To further improve our system, we tried a function with vari-
able coefficients, being trainable parameters of the system. With
a, b, c, d, e ∈ R5 the trainable parameters, we can re define the
merge function as in the equation 2 We added ReLU functions
so that if some parameters were negatives, we would still be
using positives scores in the product.

f(sASV , sCM ) =Sigmoid(

ReLU(a× sASV + b)

×ReLU(c× sCM + d)

− e)

(2)

The results of using that merge function are presented line
6 if the table 2.

4.3.5. Self-Weighted fusion (Our Best)

To further improve the adaptability of the system, we decided
to compute the coefficients for each utterance, using another
MLP, as presented in the figure 2. The scalar coefficients,
(α, β, γ, δ) ∈ [0, 1]4, are computed from all vectors using a
third MLP similar to the two previous ones (with layers of di-
mensions [192×2+160, 1024, 512, 256, 128, 64, 2]). We only
chose 4 parameters instead of 5 previously, because a variable
fifth one would make the SASV-EER rise. The function used to
merge the score is presented in the equation 3.

f(α, β, γ, δ, sASV , sCM ) =Sigmoid(

ReLU(α× sASV + β)

×ReLU(γ × sCM + δ)

− 0.5)

(3)

The results of this subsystem are presented line 7 of the
table 2.

5. The results
In this section, the results for different fusion subsystems are
presented. All fusion subsystems were trained for 10 epochs
using the ASVspoof 2019 LA train partition, presented section
3. The results are presented in the table 2.

Comparing the lines 1 and 3 in the table, we see a huge drop
in the SV-EER performances, because ASV systems EER are
usually computed using Cosine Similarity or PLDA as scoring
systems, not 3-layers MLP. Thus, facilitating the computation
of a Cosine Similarity by adding the dot product of the ASV
embeddings (line 4 of the table 2) dropped the SV-EER from
11.48% to 2.53%.

We can see that the best results (considering lines 1-4 of the
table 2) for SV-EER and SPF-EER were obtained using respec-
tively only the ASV and the CM embeddings. This is gave us
the idea to process separately the embeddings, before merging
the results. The merging was first made using handcrafted co-
efficients, leading to a small improvement, as seen line 5 of the
table 2. Then, we used trainable coefficients, that lead to further
improvement (line 6).

Finally, we used utterance-specific coefficients, thus lead-
ing to a self-weighted fusion. The separated processing, com-
bined to the cosine similarity facilitation and self-weighted fu-
sion of the scores gave us a 1.48% SASV-EER for on the eval-
uation partition, as seen line 7 of the table 2.

6. Conclusions
This article presents a submission system to the SASV chal-
lenge 2022 [1]. The goal of the challenge was to make a spoof-
ing aware speaker verification, getting at the same time good
Automatic Speaker Verification and Counter Measure perfor-
mances. We based our proposition on the second baseline of
the challenge :

1. An ECAPA-TDNN [7] subsystem producing embed-
dings for the ASV sub-task.

2. An AASIST [13] subsystem producing an embedding for
the CM sub-task.



Figure 2: Schematic of the self-weighted fusion scoring subsystem used in the 4.3.5 section.
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Table 2: The three different EERs (%) for the SASV 2022 development and evaluation partitions. The results are shown for the base
ASV system (ECAPA-TDNN), the second baseline solution and the proposed system. The last column show the number of parameters
for each of the fusion subsystems considered. Best results are bold, second bests are italic.

SV-EER SPF-EER SASV-EER N parameters
Dev Eval Dev Eval Dev Eval of the fusion subsystem

1 ECAPA-TDNN 1.88 1.63 20.30 30.75 17.38 23.83
2 AASIST + DNN 46.90 47.48 0.067 0.71 15.83 24.30 180K
3 Baseline2(back-end ensemble model) 12.87 11.48 0.13 0.78 4.85 6.37 180K

4 Cosine Similarity Facilitation (Ours) 2.49 2.53 0.31 2.36 1.38 2.43 229K
5 w Weighted Fusion (Ours) 5.32 3.89 0.076 0.60 2.37 2.35 2.5M
6 w Trainable Weighted Fusion (Ours) 3.09 2.89 0.25 0.97 1.63 1.81 2.5M
7 w Self-Weighted Fusion (Ours) 1.89 2.44 0.071 0.56 0.94 1.48 3.7M

3. A DNN fusion subsystem.

We proposed a self-weighted fusion subsystem to merge the
embeddings produced by the ASV and CM subsystems, using
dot product of the ASV embeddings to facilitate the cosine simi-
larity computation by the system. Our system achieve a 1.478%
SASV-EER on the evaluation partition.

Our best system did not present the best Evaluation SV-
EER or the best Development SPF-EER, from those presented
table 2. In future works, we target the improvement of the sep-
arated performances on the SV and SPF sub-tasks, that should
lead to a direct improvement in the global SASV task. We also
wanted to measure the performances for an ASV system trained
using WavLM pre-processing [8], but this is out of the challenge
limits, given that WavLM is a system pre-trained with another
set of data than the ones authorized.
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