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Abstract
Research in the past several years has boosted the performance
of automatic speaker verification systems and countermeasure
systems to deliver low Equal Error Rates (EERs) on each sys-
tem. However, research on joint optimization of both systems
is still limited. The SASV 2022 challenge was proposed to en-
courage the development of integrated spoofing aware speaker
verification system (SASV) with new metrics to evaluate joint
model performance. This paper proposes an ensemble-free end-
to-end solution, SA-SASV, to build a SASV system with multi-
task classifiers, which are optimized by multiple losses. The
proposed system is evaluated on the ASVSpoof 2019 evalua-
tion dataset and improves the performance of baseline systems
from 8.76% to 4.48% in SASV-EER.
Index Terms: spoofing aware speaker verification, spoof detec-
tion

1. Introduction
Automatic speaker verification (ASV) systems have shown the
ability to provide biometric authentication of users for applica-
tions that require robust reliability in changing acoustic environ-
ments, including resistance to malicious attacks [1, 2, 3, 4, 5].
However, current ASV systems are still vulnerable to spoofing
attacks, such as text-to-speech(TTS) [6, 7, 8] and voice conver-
sion(VC) [9], and can be deceived and manipulated by mali-
cious entities using generated speech. To overcome bottlenecks
in spoofing and countermeasure research for ASVs, a series of
ASVSpoof challenges have been proposed since 2015 to help
encourage the development of robust countermeasure (CM) sys-
tems [10, 11, 12, 13], which can complement ASV systems with
an anti-spoof model. The anti-spoof gate by provides a ”spoof
confidence” score to help filter out spoofing attacks. Metrics
on the ASVSpoof challenge are based on the minimum tan-
dem detection cost function (t-DCF) [14], which can evaluate
the performance of CM systems on fixed ASV systems with
pre-determined output scores. Rather than developing CM and
ASV systems independently, a neglected research question is if
we can develop an integrated system where CM and ASV sys-
tem can be optimized together, so that a single verification score
is able to determine whether an input speech sample is a target
speaker, while also accounting for potential spoofing attacks.

To encourage research on integrated Spoofing-Aware
Speaker Verification (SASV) systems, the SASV Challenge
2022 [15] was proposed using the ASVSpoof 2019 Logical Ac-
cess Dataset with new metrics, SASV-EER. In the challenge, a
single score determines if the input speech sample is the target
speaker. Non-target inputs include both zero-effort and spoofed
impostors. The SASV challenge provides two baseline systems
by applying different fusion strategies (a. score-level fusion b.
embedding-level fusion) to pre-trained ASV systems and CM

Figure 1: Feasible solutions to build integrated SASV systems.
Red/green lines indicate separate training stages. (a)Cascaded
ASV/CM systems. (b)Fusions of scoring prediction. (c)Fusions
of scoring and feature embedding. (d)Fusions of feature embed-
ding. (e)End-to-End SASV systems.

systems. Figure 1 shows potential solutions to the SASV prob-
lem.

In this paper, rather than fusion strategies, we propose
a fully trainable end-to-end SASV system, called Spoof-
Aggregated Spooring Aware Speaker Verification System (SA-
SASV). The proposed approach combines a pre-trained ASV
system with a lightweight raw waveform encoder to form the
overall encoder [16]. This paper builds on our experience that
encoding can be one of the most important aspects of these
types of anomaly detection problems [16, 17, 18]. Multiple
classifiers and spoof-source-based triplet loss are employed to
further enhance model performance in generating the shared
SASV feature space.

The rest of the paper is organized as follows: Section 2 in-
troduces related research on SASV systems; Section 3 discusses
the model architecture of our Spoof-Aggregated Spoofing-
Aware Speaker Verification Systems; Experiment results are
discussed in Section 4; and Section 5 presents concluding re-



Figure 2: Desired speech sample classification distribution of
different spoof detection systems. The SASV system integrates
the CM and ASV systems so that there are two types of bound-
aries to separate spoof/bonafide speech and target/non-target
speakers.

marks.

2. Related Work
The SASV system aims to build a single system to reject ut-
terances from zero-effort and spoofed speech. Previous work
focused on two solutions to this problem: ensemble SASV so-
lutions and integrated single system solutions.

Ensemble SASV solutions take fixed outputs from pre-
trained ASV and CM systems and apply varying fusion strate-
gies to generate a single SASV score for both tasks. Sizov et
al. [19] was the first to apply i-vectors and a PLDA back-end for
joint modeling of speaker verification and spoof detection. At
the score level, Todisco et al. [20] proposed a two-dimensional
score modeling method to get a single score threshold for both
ASV and CM systems. Shim et al. [21] discusses a back-End
modular approach to train embeddings from pre-trained fixed
ASV systems and spoofing predictions from CM systems to
predict final SASV scores. In addition to scoring ensembles,
fusions based on embeddings from different models have also
been tested. For example, Gomez-Alanis et al. [22] proposed
DNN-based integration methods to train three types of embed-
dings from ASV and CM systems jointly.

The target task of an integrated single SASV system is
to build an end-to-end system that simultaneously classifies
speech based on whether or not it is from the target speaker
and is authentic non-spoofed speech. Zhao et al. [23] built an
SR-ASV system with two classifiers to get CM scores and ASV
scores from shared layers and the final decision is based on both
the CM and ASV scores. Li et al. [24] applied speaker-based
triplet loss to train multi-task classification networks to make a
joint decision on anti-spoofing and ASV.

As a form of integrated single SASV system, our method
explores the shared feature space of ASV and CM tasks. To
obtain proper embeddings for speech from the multiple en-
coders that we employ, both hand-crafted features and raw
waveforms are input into SA-SASV. We first discuss the fea-
sibility of optimizing the SASV feature space by aggregating
spoofed voice samples based on their spoofing sources. The
proposed model was trained with multiple loss functions, in-
cluding spoof source-based triplet loss. The final decision by
our model is based on cosine similarity and CM scores of sin-
gle model.

3. AS-DGASV Model Architecture
As shown in Figure 2, compared to independent CM models
and ASV models, the ideal feature space learned from SASV

models should have the following characteristics: 1) Spoofed
and bonafide speech should be densely aggregated, so that ob-
vious margins can be drawn to separate them. 2) In the clusters
of bonafide speech, sources from different speakers should be
sparsely distributed so that models can distinguish between dif-
ferent speakers.

To acheive this type of optimized feature space in a SASV
system, we proposed the SA-SASV model, whose decoder con-
sists of three parts: multi-task classifiers, spoof aggregators, and
spoof-source-based triplet loss, as shown in Figure 3. This fully
trainable model takes both raw waveforms and hand-crafted fea-
tures as input and multiple losses are used to optimize feature
embedding.

3.1. The ARawNet Encoder

Previous research shows that the best-performing ASV sys-
tems [5] and CM systems [25], take hand-crafted features
and raw waveforms, respectively, indicating distinctive features
among each type of input that are useful for identifying speakers
and spoofing attacks. However, it is difficult to simply merge
existing state-of-the-art ASV and CM systems together to de-
velop an end-to-end model, due to the resulting large model
size and high computational complexity. We use our previ-
ously published ARawNet architecture [16] to help overcome
this limitation. Our encoder combines a pre-trained ASV sys-
tem (ECAPA-TDNN) and a lightweight raw waveform encoder
to allow for simultaneous analysis of both learned features and
raw wave forms.

We denote input utterance as U . An utterance’s embedding,
Eu, can be described as shown in Equation 1, where Fasv is a
pre-trained ECAPA-TDNN, Fraw is an un-trained auxiliary raw
encoder, and Fc is a concatenating encoder that handles outputs
from Fasv and Fraw.

Eu = Fc(Fasv(U), Fraw(U)) (1)

3.2. Multi-task Classifiers

Since end-to-end SASV systems need to determine if input
speech is bonafide, and if so, if it is the target speaker, this
problem can be formulated as a multi-task classification prob-
lem. Two classifiers are used to predict spoof attacks / speaker
id independently, with shared feature embeddings from the en-
coder. The CM classifier Ccm receives all inputs and predicts
confidence scores, indicating if the input is believed to represent
a spoofing attack. A bonafide mask layer is placed before the
ASV classifier, Casv , so that losses produced by the ASV classi-
fier are only from bonafide speech. Binary cross entropy(BCE)
loss and AAM-softmax loss are used for the CM and ASV clas-
sifiers, as described in Equation 3 and Equation 2[26] respec-
tively.

Lasv = − 1

N
ΣN

i=1log
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Figure 3: Model structure of the SA-SASV system. The shared embedding is fed into multiple classifiers. The feature space from the
encoders optimized by combinations of various loss functions.

Figure 4: Results of agglomerative clustering on ASVSpoof
2019 LA Dataset.

Figure 5: Training based on spoof-source based triplet loss.
Positive samples (utterances with the same labels) are pulled
closer and negative samples are pushed away.

3.3. Spoof Aggregator

In the SASV task, utterances, U , consists of spoof attack sam-
ples, Us, and bonafide speech samples, Ub. As shown in Fig-
ure 2, Us should have a relatively dense distribution in the
shared feature space. However, it is challenging to aggregate
the various spoofing attacks together due to their intrinsic differ-
ences in speech generation methods. This inherent difficulty in
separating the two is evidenced by analyzing Us from different
sources using agglomerative clustering [27], as shown in Fig-
ure 4. The results indicate that Utts, which represents produced
with Text-to-Speech(TTS), and Uvc, which represents samples
from Voice Conversion(VC), Uvc, tend to be closer in corre-
sponding feature space. Thus, we conjecture that Utts and Uvc

need to be aggregated into two clusters in the feature space of
SASV systems.

We use two adversal learning layers to construct a spoof ag-
gregator so that Utts and Uvc aggregate separately. We labeled
the Us as A1 . . . A6, representing the spoof type, where A1 to
A4 are from Utts and A5 to A6 are from Uvc. Followed by a
masking layer, Etts and Evc are sent to Ctts and Cvc, where
each independently attempts to predict what spoof type Us cor-
responds to. The cross entropy loss for both classifiers is shown
in Equation 4

Ltts = Lvc =
1

N
ΣN

i yA
i logCspoof (E) (4)

Since we want our embedding, E, to mix spoof attacks from
the same types of generation mechanisms together, so that Ctts

and Cvc fail to distinguish different spoofing attack types, a gra-
dient reverse layer(GRL) is added before the classifiers to max-
imize Ltts and Lvc.

3.4. Spoof source based triplet loss

The shared feature space from SASV systems tends to be dif-
ferentiated by Utts, Uvc, and different speakers Uspki . In other
words, the goal is for E with the same labels to be relatively
compactly clustered and the overall cluster separated from E



Subsets #Bonafide Spoofed
#TTS #VC

Training 2580 A1-A4
15200

A5-A6
7600

Development 2548 A1-A4
14864

A5-A6
7432

Evaluation 7335 A7-A16
49140

A17-A19
14742

Table 1: Statistics of ASVSpoof 2019 LA Dataset

samples with different labels. Boundaries between the E sam-
ples with different labels should be distinct. To help achieve this
outcome, rather than applying speaker-based triplet loss, we ap-
plied spoof source-based Triplet loss. Conventional triplet loss
is described as Equation 5:

Lt = ∥Ea − Ep∥ − ∥Ea − En +m∥ (5)

As shown in Figure 3, Ei is labeled as TTS, V C and
SPKi, where SPKi indicates the ith speaker. The goal is
to cluster, Ei samples, with same labels as densely as possible
and scatter SPKi to make it far away from SPKj , TTS and
V C, as shown in Figure 5. Thus, for an utterance from speaker
i, Uspki , the spoof source based triplet loss is updated as shown
in Equation 6

Lst = Lt(Ea, Ep, Etts) + Lt(Ea, Ep, Evc)

+ΣN
j=0Lt(Ea, Ep, Espkj )i ̸= j

(6)

3.5. Overall Loss Function

As shown in Figure 3, the overall loss for AS-DGASV is de-
termined by all of its constituent decoders, which includes five
different loss functions, as shown in Equation 7.

Lsasasv = Lcm + λ1Lasv + λ2Ltts + λ3Lvc + λ4Lts (7)

4. Experiment
4.1. Experiment Setting

Dataset. The SASV challenge permits the VoxCeleb2
dataset [28] and the ASVspoof 2019 LA dataset [12] for train-
ing the ASV and CM models. The VoxCeleb2 database consists
of over 1 million utterances from 6,112 speakers and is designed
for the ASV task, without spoofed data. The ASVspoof 2019
LA dataset, on the other hand, is prepared for the CM tasks,
containing 6 types of spoof attacks in the training set and an-
other 11 types of spoof attacks in the evaluation set, where the
SASV models are tested. As shown in Table 1, the models need
to generalize training attacks (A1-A6) to unseen attacks (A7-
A19).

We use the VoxCeleb2 dataset to pre-train the ECAPA-
TDNN and our model is fine-tuned on the ASVspoof 2019 LA
dataset.

Metrics. We evaluated our model performance based on
the SASV-EER, which is the primary metric in the SASV chal-
lenge. As shown in Table 3, only target speakers are labeled
as positive and both non-target bonafide and spoof attacks are
labeled as negative in the SASV-EER. The SV-EER and SPF-
EER, are complements to SASV-EER, and reflect models’ ca-
pability in different subsets of the full trials. Compared to the

Figure 6: Visualization of the feature space in SA-SASV using t-
SNE. (a) Naive multi-task classification on the development set.
(b) SA-SASV on the development set. (c) Naive multi-task clas-
sification on the evaluation set. (d) SA-SASV on the evaluation
set.

EER used in the ASVSpoof challenge, the SPF-EER only tests
model performance in trials based on bonafide target speakers
with spoofed speech.

Baseline. The SASV challenge provides two baseline mod-
els using state-of-the-art ASV and CM systems with differ-
ent fusion strategies. Baseline1 adopts a score-sum ensem-
ble, which uses a naive sum function to integrate non-calibrated
scores from the ASV and CM systems. While this method does
not consider the difference between scores from different sys-
tems, scores of ASV systems are cosine similarity and scores
of CM systems are from classifiers. Baseline2 uses an extra
network as a fusion strategy that takes embeddings from pre-
trained ASV and CM systems to produce the final scores.

4.2. Results Discussion

4.2.1. Results

Visualization. To observe the updates of the features space pro-
duced by our encoder, we visualized utterances in the develop-
ment and evaluation set using the t-SNE as shown in Figure 6.
The left side shows the distribution of samples from the naive
multi-task classifier without spoof-source-based triplet loss and
the spoof aggregator and the right side shows the updated dis-
tribution using SA-SASV. Compared to naive the multi-task
classifier, both spoof attacks from TTS and VC tend to have
denser clustering and cleaner boundaries, making TTS, VC, and
bonafide easier to differentiate.

4.2.2. Model Comparison with other SASV systems

We compared the characteristics and performance on the
ASVSpoof 2019 LA dataset of SA-SASV with other SASV sys-
tems as shown in Table 2. Compared to other ensemble-based
systems, SA-SASV takes advantage of a single training phase,
intending to build a single representation in the feature space
for utterances from different sources. Our SA-SASV improves
SASV-EER from 6.05% (the prior best-performed INN(AUE)



Models Inputs Encoders Training Fusion EER-SASVPhase1 Phase2

SASV-Baseline1 [15] raw waveforms,
Fbanks

ECAPA-TDNN,
AASIST ASV, CM systems \ Score 19.15

SASV-Baseline2 [15] raw waveforms,
Fbanks

ECAPA-TDNN,
AASIST ASV, CM systems concatenated

embeddings Embeddings 8.76

Cascaded
CM/ASV [22]

MFCC
STFT

LC-GRNN,
X-Vector ASV, CM systems \ \ 7.67

2-stage PLDA [22, 19] MFCC X-Vector PLDA PLDA \ 28.40

Triplet TDNN [22, 24] MFCC,
CQCC TDNN TDNN PLDA(CM)

PLDA(ASV) Score 8.99

INN(AUE) [22] MFCC,
STFT

LC-GRNN,
B-Vector ASV, CM systems concatenated

embeddings Embeddings 6.05

SA-SASV raw waveforms,
Fbanks

ECAPA-TDNN
ARawNet SA-SASV \ \ 4.48

Table 2: Comparison on characteristics and performance of different SASV systems.

Target Non-target Spoof
SV-EER + -
SPF-EER + -
SASV-EER + - -
Table 3: Metrics to evaluate SASV systems.

EER(%)
SASV SV SPF

Development 0 0 0
Evaluation 4.48 7.09 1.07

Table 4: Results on the ASVSpoof 2019 Dataset

system) to 4.48%.

5. Conclusion
We proposed an end-to-end SA-SASV model, which takes both
hand-crafted features and raw waveforms as input. In addition,
our model is optimized with multiple loss functions to aggregate
TTS, VC, and different speakers separately. Results show that
the feature space of SA-SASV is better able to distinguish spoof
attacks and identify speakers versus prior published approaches.
Further, the SASV-EER is improved from the 6.05% produced
by prior state of the art approaches to 4.48% without an multi-
model ensembling strategy. Using an ensemble would likely
further boost the performance and we will explore this in future
work.
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