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Abstract

This report introduces the submission of the team IRLAB for
the Spoofing-Aware Speaker Verification (SASV) challenge
2022. We explored two back-end models for the SASV task
based on the score and embedding fusion methods. As a score
fusion solution, we devised a score fusion model that performs
speaker verification in spoofing scenarios, and finally derived a
SASV score by aggregating speaker verification, anti-spoofing,
and the score fusion model scores using a fully connected DNN.
On the other hand, from the perspective of embedding fusion so-
lution, we designed an integrated embedding projector that casts
speaker and countermeasure embeddings to an SASV embed-
ding, and calculated final score between the SASV embeddings
based on the cosine similarity. Each of the proposed systems
achieved equal error rates of 0.56% and 1.32% for the SASV
evaluation protocol.

Index Terms: speaker verification, spoofing attacks, spoofing-
aware speaker verification (SASV)

1. Introduction

This technical report describes the proposed back-end inte-
grated models based on the score and embedding fusion ap-
proaches. Our score fusion solution uses the scores of the
speaker verification (SV) and spoofing countermeasure (CM)
subsystems directly as in baselinel [1]. Furthermore, we intro-
duced a score fusion model trained on the SV task in spoofing
scenarios to improve the score of the SV subsystem. Then, the
scores of the SV, CM, and the score fusion models are inte-
grated using a multi-layer perceptron (MLP), and a final score
for SASV is derived. Additionally, from the perspective of em-
bedding fusion solution, we further proposed an integrated em-
bedding projector that convert SV and CM embeddings into
SASV embeddings. The embedding projector is trained using
a metric learning loss, and the SASV score is directly calcu-
lated based on cosine similarity through comparison between
the integrated embeddings.

2. SV and CM subsystems

To devise a back-end system for SASV task, we used the pre-
trained ECAPA-TDNN [2] and AAIST [3] models provided
by the challenge organizer as the subsystems of SV and anti-
spoofing tasks [1]. Both subsystems used the pre-trained ver-
sions found in this link '. We modified the SV subsystems to
extract a speaker embedding using the full utterance instead of
400 frames of the utterance.

3. Proposall: MLP score fusion model

The proposed score fusion solution is based on the motiva-
tion from several observations of the experiments. Figure |
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Figure 1: The SV score distribution of the pre-trained ECAPA-
TDNN subsystem for all development trials. The red, blue, and
green colors denote the distributions of target, non-target, and
spoofed.

shows the distribution of the ECAPA-TDNN’s SV score for
all development trials. The distribution of target and non-target
are clearly separated, which means the SV subsystem reliably
performs in bonafide scenarios. However, the distribution of
spoofed utterances is widely dispersed, overlaying both the tar-
get and non-target distributions. This phenomenon is due to the
degradation of the discrimination of the SV subsystem in the
spoofing scenario.

Therefore, to improve the SV score, we propose a speaker
verification score fusion model (SVSF) that learns speaker ver-
ification in spoofing scenarios. The SVSF model is fed by
the embeddings of the SV and CM subsystems and outputs
a speaker verification score vector. The structure of SVSF is
shown in figure 2 and each module is described in table 1. It
consists of two embedding fusion blocks (u1, u2) and a score
calculation block (pj). SV and CM embeddings extracted from
test and enrollment utterances are concatenated and fed to ul.
In the same way, the embeddings extracted from test utterances
are fed to u2. ul and u2 combine the speaker and spoofing in-
formation in the embeddings and output 160-dimensional fea-
ture vectors. Then the block pj converts the feature vector into
a speaker verification score vector. The first node of the output
score layer represents the non-target score, and the second node
represents the target score. We used only the value of the second
node as a SVSF score.

For the score fusion, we used the multi-layer perceptron
score fusion (MLPSF) that is fed by SV, CM, and SVSF scores
and output a SASV score vector. The structure of the MLPSF is
described in the left column of Table 1. It consists of three fully-
connected (FC) layers and two exponential linear unit (ELU)
layers.

SVSF and MLPSF are trained simultaneously using cate-
gorical cross entropy (CCE) criterion. The loss is calculated as
follows. Here, ¢, [ are the ground truths of SV and SASV, and
s, v denote score vectors output from SVSF and MLPSF, which
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Figure 2: Description of the structure of the proposed frame-
works. Blue and green boxes are the feature vectors that con-
catenated SV and CM embeddings extracted from enrollment
and test utterances. The Stask means the score of each task.

Training the SASV system requires the train pairs which
contain the enrollment utterances, test utterances, and SASV
labels. However, ASV spoof 2019 LA train set provides only the
utterances, speaker identities, and spoof keys. Therefore, it was
necessary to construct training pairs. We designed a training set
based on four scenarios: bonafide target speakers, bonafide non-
target speakers, spoofed target speakers, and spoofed non-target
speakers. The ratios for each scenario are 0.45, 0.25, 0.15, and
0.15.We use 2000 samples per epoch.

4. Proposal2: Integrated embedding
projector

We designed the back-end model called integrated embedding
projector (IEP) that transforms SV and CM embeddings into
SASV embeddings using a metric learning. As shown in figure
2, IEP consists of two modules, f and g, and the structure of
each module is described in table 1. The feedforward process of
IEP is as follows:

z=g(f(z,y),z,y), C))

where z denotes the output of the IEP (SASV embedding) and
z, y denote the SV, CM embeddings. We iteratively fed = and

Table 1: Description of the structure of the modules used in the
proposed framework. The left column denotes the modules of
SVSF and MLPSF, and the right column shows the modules of
IEP. SVSF consists of the two embedding fusion blocks (ul, u2)
and a score calculation block (pj). ELU is the exponential lin-
ear unit activation function proposed in [4].

Layer Structure Layer Structure
FC(352 x128) FC(352 x256)
ELU ELU
FC(128 x128) FC(256 x256)
Uy ELU f ELU
FCOEZEUX 64) FC(256 x 128)
ELU

FC(64 x160)

FC(352 x128)
ELU
FC(128 x128)
us ELU g
FC(128 x64)
ELU
FC(64 x160)

FC(480 x128)

FC(320 x128)
ELU
pj FC(128 x64) -
ELU
FC(64 x2)

FC(2 or 3 x16)
ELU
FC(16 x16) -
ELU
FC(16 x2)

MLPSF

y embedding to the g model to reaggregate information of each
task that can be distorted during the embedding fusion process.
The IEP model is trained using cosine similarity-based triplet
loss [5] to explore the embedding space for SASV. Considering
the characteristics of the SASV task, we construct a triplet for
the training as follows:

¢ Anchor (A;): i-th speaker’s bonafide embeddings.

 Positive pair (FP;): i-th speaker’s bonafide embeddings
which are extracted from different utterances other than
the anchor.

* Negative pair (NV): i-th speaker’s any spoof embeddings
or other speaker’s any bonafide embeddings.

Therefore, our proposed IEP is trained to optimize the
triplet loss as follows:
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where, c is the number of triplets per single mini-batch and m
is the margin, set to 0.5.

5. Results

In Table 2, we compared our models with the challenge base-
line systems. The proposed MLPSF outperformed the base-
linel, which just sums the scores. The MLPSF achieved EER
of 0.72% for the evaluation protocol, which shows that our pro-
posed method is effective. Moreover, when integrated with the



Table 2: Experimental results (EER, %) of speaker verification (SV), anti-spoofing (SPF), and spoofing-aware speaker verification
(SASV) tasks for the SASV 2022 challenge development and evaluation protocols. MLPSF indicates the proposed score fusion method
using MLP, and SVSF denotes the SV model considering the spoofed utterances. Also, IEP means integrated embedding projector:

SV EER SPF EER SASV EER
Dev Eval Dev Eval Dev Eval
Baselinel [1] 3288 3532 0.06 0.67 13.07 19.31

Baseline2 [ 1] 12.87 1148 0.13 0.78 4.5 6.37
MLPSF 1.3 096 0.17 044 0.60 0.72
MLPSF + SVSF  1.11 073 0.13 043 0.67 0.56
IEP 2.51 1.58 27 112 1.55 1.32

SVSF score, performance improved by 30%, achieving the EER
of 0.56%. On the other hand, the proposed IEP showed an EER
of 1.32%, which indicated poor performance than the MLPSF
with SVSF, but improved performance compared to baseline2.
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