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Abstract

In SASV challenge ID R&D team pursued two goals. The
first included building the most precise fusion of systems
minimizing the SASV EER. The second goal attempted to
build a small single-model system providing a comparable to
a big fusion system metrics. This report describes the details
of our challenge submission. In particular, we cover up the
training strategies for independently trained ASV and CM
systems and present the results of a linear fusion of all scores
together with QMFs. Our best fusion achieves 0.136% EER
on SASV-2022 evaluation set, while the smallest single-model
system with 11.6M parameters achieves 0.223% EER.

Index Terms: Speaker recognition, Voice anti-spoofing,
ASVSpoof2019, SASV Challenge 2022

1. Introduction
A Spoofing Aware Speaker Verification (SASV) challenge's aim
is to promote the development of Automatic Speaker Verifica-
tion (ASV) systems that are able to reject impostor access at-
tempts and be robust against spoofing attacks. Participants are
required to build a framework optimising the ASV systems op-
erating in tandem with countermeasures (CM) systems.

In order to develop an integrated SASV solution researchers
are encouraged to investigate the possibilities to train a single-
model system operating with spoofing and verification embed-
dings and scores, or trained in a multi-task end-to-end fashion
combining ASV and CM losses to minimize the SASV EER.

This report is structured in the following way. In Section
2 we present the models architectures, used loss function prop-
erties and input features setup. Section 3 gives an overview of
available datasets, training augmentations and models' training
sequence. We also present our fusion scheme and used Quality
Measurement Functions (QMFs) in this section. Sections 4 and
5 contain Results and Conclusions respectively.

2. System Setup
2.1. Input features

For training, fixed-length 2-second audio segments were used.
We randomly cropped segments from each utterance in the
training dataset. Then, 80-dimensional Mel filter bank log-
energies with a 25 ms frame length and 10 ms step were ex-
tracted with an FFT size of 512 over the 20-7600 Hz frequency
limits. After feature extraction, we subtract the mean along the
time axis. To test the models, we used 8-second input segments.

2.2. Architectures

All the systems in our submission are based on the residual neu-
ral networks [1], which made a breakthrough in the task of im-
age classification by using very deep models, and recently have
been efficiently applied to the speaker recognition task [2], [3].
A ResNet-34 architecture described in [3] was selected as our
baseline system. Since the deeper models usually show a per-
formance improvement in various tasks, we decided to apply
some modifications to the baseline architecture. In particular,
to increase the capacity of models we have run a series of ex-
periments and optimised such hyperparameters as a number of
residual blocks and a number of filters in each residual block. In
the end, 2 modifications of the ResNet-34 model with 48, 100
hidden layers were selected.

Detailed architectures are shown in the Table 1 and results
of verification testing on VoxCeleb1-test dataset presented in
the Table 2, where CFA and CMiss equals to 1, and Ptarget equals
to 0.01 for MinDCF metric.

2.3. Subnetwork Approach

For detection of spoofing attacks we have trained a small sub-
network on top of verification backbone, in the same way as it
was described in [4].

2.4. Loss function

All our models were trained using the Additive Margin Softmax
(AM-Softmax) loss function [5]. The main aim of this loss is to
reduce the interclass variance by introducing the margin penalty
to the target class logit. AM-Softmax showed itself as an effec-
tive loss function in face recognition and has been successfully
applied to speaker recognition task as well. According to [3],
the margin value was set to 0.3 and a scale value was set to 40.

3. Experiments

3.1. Datasets

For speaker recognition (ASV) systems training VoxCeleb2-dev
(5994 speakers) dataset [6] was used, and a training subset of
ASVSpoof2019 Logical Access (LA) [7] dataset was used for
implementing the voice anti-spoofing (CM) systems. Eval sub-
set of ASVSpoof2019 LA dataset was used to evaluate the sys-
tems performance, and dev subset of ASVSpoof2019 LA was
used for development purposes, such as best training epoch
model weights selection for anti-spoofing model and optimiza-
tion of linear fusion weights for combined SASV system.



Table 1: Models architectures

Layer name Output (C × F × T) ResNet-48 ResNet-100

Conv2D C × 80 × T 96, 3×3, stride=1 128, 3×3, stride=1

ResBlock-1 C × 80 × T
[
3× 3, 96
3× 3, 96

]
× 6

[
3× 3, 128
3× 3, 128

]
× 6

ResBlock-2 128 × 40 × T/2
[
3× 3, 128
3× 3, 128

]
× 8

[
3× 3, 128
3× 3, 128

]
× 16

ResBlock-3 C × 20 × T/4
[
3× 3, 160
3× 3, 160

]
× 6

[
3× 3, 256
3× 3, 256

]
× 24

ResBlock-4 256 × 10 × T/8
[
3× 3, 256
3× 3, 256

]
× 3

[
3× 3, 256
3× 3, 256

]
× 3

Flatten (C, F) 2560 × T/8 —

Pooling 5120 StatsPooling

Dense 256 —

AM-Softmax Num. of speakers —

Table 2: Results on VoxCeleb1-O Standard protocol

Model EER [%] MinDCF
ResNet-48 1.09 0.102
ResNet-100 0.90 0.069

3.2. Data augmentation

To augment verification training datasets we used MUSAN cor-
pus [8] and real room impulse responses (RIRs) database [9].
We applied various on-the-fly augmentations during the train-
ing process. For each training utterance we applied 6 different
augmentation strategies:

• Music: A single music file was randomly selected from
MUSAN and added to the original audio (5-15dB SNR).
The duration of additive noise was matched to the dura-
tion of the original signal.

• Noise: Randomly selected noise from MUSAN was
added to the original recording (0-15dB SNR).

• Speech: Three to seven speakers were randomly picked,
summed together, and then added to the original signal
(13-20dB SNR).

• Reverb: Artificially reverberated a signal via convolu-
tion with real RIRs.

• Speed: Artificially change speed of file (via FFT resam-
pling). Speed is chosen randomly from [0.9, 1.0, 1.1].
Each speed used its own set of classes. The number of
target speaker classes has been tripled.

• Spectral augmentation: We also applied
SpecAugment[10] to the input log Mel-spectrograms
and randomly masked 0 to 5 frames in the time domain
and 0 to 10 frequency bins.

3.3. Implementation details

All the described models were trained using TensorFlow 2
framework [11] and SGD optimizer with momentum (set to
0.9). To train very deep ResNet architectures faster, Google
Cloud TPUs were used. To train the models we used the fol-
lowing two-stage scheme:

3.3.1. Verification backbone

We have trained a speaker recognition models for 50 epoch,
where each epoch consists of 5000 steps, with a batch size of
256. To form a batch, we sampled 256 unique speakers and
took a single utterance for each of them. During training we
updated the learning rate and margin of AM-Softmax loss func-
tion. Learning rate linearly increased from minimum (1e-4) to
maximum value (0.1), while margin was equal to zero for the
first 3 epochs. Then we fixed learning rate at the maximum
value and linearly increased the value of margin from zero to
it’s maximum value (0.3) for the following 10 epochs. For the
rest of training, we fixed the margin of AM-Softmax loss and
applied an exponential decay to the learning rate every 4 epochs
with a rate of 0.5. We have also applied L2-norm regularization
of 1e-5 for all model’s weights except the AM-Softmax head,
for which we increased the regularization value to 1e-4.

3.3.2. Anti-spoofing subnetwork

On the second stage, we freezed the verification backbone and
trained an anti-spoofing subnetwork on top of it using the AM-
Softmax loss function. The size of input was extended to 4
seconds while training and no augmentations were applied to
the training data.



Table 3: SV, SPF and SASV protocols EER (%) for the SASV 2022 development and evaluation partitions
E - enrollment utterances, V - verification utterance

Group Name Description SV-EER [%] SPF-EER [%] SASV-EER [%]

Dev Eval Dev Eval Dev Eval

Challenge
Baseline

ECAPA-asv ECAPA-TDNN ASV score [12] 1.88 1.63 20.30 30.75 17.38 23.83
AASIST-cm AASIST CM score [13] 46.02 49.24 0.07 0.67 15.85 24.37
Baseline2 Ensemble of ECAPA-TDNN and ASIST 12.87 11.48 0.13 0.78 4.85 6.37

ASV r48-asv ResNet48 ASV cosine score (E vs V ) 0.000 0.151 15.230 24.417 12.263 18.123
r100-asv ResNet100 ASV cosine score (E vs V ) 0.051 0.111 14.676 22.942 11.921 17.277

CM r48-cm ResNet48 CM cosine score (E vs V ) 49.265 48.394 0.067 1.400 15.556 24.224
r48-cm-cls ResNet48 CM classification score (V ) 36.124 50.045 0.135 0.520 13.274 25.381

Single
Model
System

SF1 r48-asv + r48-cm 0.205 0.522 0.146 0.916 0.199 0.743
SF2 + r48-cm-cls 0.068 0.377 0.067 0.431 0.068 0.406
SF3 ++ ResNet48 ASV ASNorm score (E vs V ) 0.077 0.278 0.076 0.433 0.076 0.339
SF4 +++ QMF: ResNet48 CM class. score (E) 0.068 0.238 0.067 0.279 0.068 0.260
SF5 ++++ QMFs: speech lengths (E and V ) 0.068 0.186 0.067 0.245 0.068 0.223

Models
Ensemble

F1 SF2 + r100-asv 0.068 0.279 0.072 0.448 0.068 0.354
F2 + AASIST-cm 0.128 0.261 0.007 0.226 0.052 0.242
F3 ++ ASNorm for ResNet48 and ResNet100 0.137 0.258 0.016 0.224 0.062 0.242
F4 +++ QMF: ResNet48 CM class. score (E) 0.009 0.150 0.007 0.172 0.007 0.153
Submission ++++ QMFs: speech lengths (E and V ) 0.000 0.105 0.004 0.168 0.004 0.136

3.4. Fusion description

The output of our integrated SASV system includes fusion of
cosine similarity scoring of backbone and anti-spoofing sub-
network embeddings and an anti-spoofing subnetwork spoofing
probability output score as follows:

1. ASV cosine similarity score between mean enrollment
model backbone embedding and a verification file back-
bone embedding

2. CM cosine similarity score between mean enrollment
model anti-spoofing subnetwork embedding and a ver-
ification file anti-spoofing subnetwork embedding

3. CM spoof probability of a verification file from the 2-
class head of anti-spoofing subnetwork

4. Same as 1 with additionaly applied ASNorm backend

ASNorm cohort size is 1200 random files from
ASVSpoof2019 LA train set with a top N = 300 trials
used to estimate mean and std of scores distribution for
normalization.

3.4.1. Quality Measurement Functions

To further improve the target metrics, QMF [4] correcting terms
were used in addition to ASV and CM scores to shift each trial.
QMF values were extracted from enrollment and verification
files, and the following factors were used in a final submission:

• Enrollment model speech length - sum of speech
lengths across all enrollment files in a model

• Verification file speech length
• Enrollment model inverted CM score - mean value of

inverted sign CM system output for all enrollment files in
a model. This factor is considered as a feature describing
the mean quality of enrollment model.

File speech length was extracted using a simple energy-
based VAD from Kaldi toolkit [14].

3.4.2. Fusion scheme

The SASV system output is a linear fusion of ASV and CM
scores and QMF values for enrollment and verification files.
The optimal weights are estimated using COBYLA toolkit [15]
minimizing the EER metric on SASV development set.

3.5. Evaluation

Evaluation of systems' performance is done using Equal Er-
ror Rate (EER) metric, corresponding to the operating point of
equal False Acceptance and False Rejection error rates.

4. Results
The testing results on SASV dev and eval data are presented
for all challenge protocols in the table 3. This table reflects
our ASV backbones quality as well CM anti-spoofing subnet-
works quality for ResNet48 and ResNet100 models. From this
table we can see how our single model system SASV-EER was
improved by using a fusion of ASV and CM embedding-based
scores (SF1). Moreover, extending such fusion with CM spoof
output probability scores and various QMFs (SF5) lead us to a
significant x3 EER reduction on SASV protocol for both dev
and eval subsets. In the result, the SF5 system consists of
ResNet-48 model only (verification backbone with a small anti-
spoofing subnetwork) with QMFs in fusion and reaches 0.223%
SASV-EER on eval set, while being relatively compact (11.6M
parameters) and fast.

In a similar to the single model system fusion fashion we
have built an ensemble system containing both ResNet48 and
ResNet100 models together with an open-sourced AASIST [13]
CM scores. By exploiting the previously showed fusion im-
provement strategy with various QMFs we were able to achieve
the final metric of 0.136% SASV-EER on a challenge evaluation
set with our ensemble submission.



5. Conclusions
In our paper we showed how to train the voice anti-spoofing
subnetwork on top of a precise verification backbone. Addition-
ally, we proposed a novel scoring strategy for SASV protocols,
which includes the usage of embedding-based similarity scores
and anti-spoofing classification head output spoof probability.
Furthermore, we have found out that the usage of QMF factors
could be very profitable, especially if applied to both enrollment
and verification utterances.

6. References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[2] J. Thienpondt, B. Desplanques, and K. Demuynck, “Tackling the
score shift in cross-lingual speaker verification by exploiting lan-
guage information,” arXiv preprint arXiv:2110.09150, 2021.

[3] D. Garcia-Romero, G. Sell, and A. Mccree, “MagNetO: X-vector
Magnitude Estimation Network plus Offset for Improved Speaker
Recognition,” in Proc. Odyssey 2020 The Speaker and Language
Recognition Workshop, 2020, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.21437/Odyssey.2020-1

[4] A. Alenin, R. Makarov, N. Torgashov, I. Shigabeev, and K. Si-
monchik, “The id r&d system description for short-duration
speaker verification challenge 2021,” in Interspeech 2021, 2021,
pp. 2297–2301.

[5] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[6] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.

[7] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. A. Lee,
“Asvspoof 2019: Future horizons in spoofed and fake audio de-
tection,” arXiv preprint arXiv:1904.05441, 2019.

[8] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[9] I. Szoke, M. Skacel, L. Mosner, J. Paliesek, and J. Cernocky,
“Building and evaluation of a real room impulse response
dataset,” IEEE Journal of Selected Topics in Signal Processing,
vol. 13, no. 4, p. 863–876, Aug 2019. [Online]. Available:
http://dx.doi.org/10.1109/JSTSP.2019.2917582

[10] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, and Q. V. Le, “Specaugment: A simple
data augmentation method for automatic speech recognition,”
Interspeech 2019, Sep 2019. [Online]. Available: http://dx.doi.
org/10.21437/Interspeech.2019-2680

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A
system for large-scale machine learning,” in 12th {USENIX} sym-
posium on operating systems design and implementation ({OSDI}
16), 2016, pp. 265–283.

[12] B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-
tdnn: Emphasized channel attention, propagation and ag-
gregation in tdnn based speaker verification,” arXiv preprint
arXiv:2005.07143, 2020.

[13] J.-w. Jung, H.-S. Heo, H. Tak, H.-j. Shim, J. S. Chung, B.-J. Lee,
H.-J. Yu, and N. Evans, “Aasist: Audio anti-spoofing using inte-
grated spectro-temporal graph attention networks,” arXiv preprint
arXiv:2110.01200, 2021.

[14] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[15] M. J. Powell, “A view of algorithms for optimization without
derivatives,” Mathematics Today-Bulletin of the Institute of Math-
ematics and its Applications, vol. 43, no. 5, pp. 170–174, 2007.

http://dx.doi.org/10.21437/Odyssey.2020-1
http://dx.doi.org/10.1109/JSTSP.2019.2917582
http://dx.doi.org/10.21437/Interspeech.2019-2680
http://dx.doi.org/10.21437/Interspeech.2019-2680

	 Introduction
	 System Setup
	 Input features
	 Architectures
	 Subnetwork Approach
	 Loss function

	 Experiments
	 Datasets
	 Data augmentation
	 Implementation details
	 Verification backbone
	 Anti-spoofing subnetwork

	 Fusion description
	 Quality Measurement Functions
	 Fusion scheme

	 Evaluation

	 Results
	 Conclusions
	 References

