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Abstract
In this paper, we introduce the Hanyang University spoofing-
aware speaker verification (SASV) system submitted for the
SASV challenge 2022. Our strategy is to learn spoofing-
aware speaker embeddings (SASEs) that can effectively pro-
duce SASV scores with a simple cosine similarity scoring back-
end. To achieve this, we build a neural-network-based SASE
model that uses a spoofing countermeasure (CM) embedding
and speaker embedding to produce an SASE. The baseline anti-
spoofing model is used to extract CM embeddings, and ResNet-
34- and Res2Net-based models are employed for the speaker
embedding extraction. When evaluated on the ASVspoof2019
logical access dataset, our best tandem (i. e., the cascade of anti-
spoofing and speaker verification) and proposed SASV systems
achieved SASV equal error rates of 0.1924% and 0.1817% on
the developement set and 0.3911% and 0.2793% on the evalu-
ation set partitions, respectively.
Index Terms: speaker verification, anti-spoofing, spoofing-
aware speaker verification

1. Introduction
Spoofing countermeasures (CMs) for detecting synthesized,
machine-generated speech utterances are an essential require-
ment for the design of reliable speaker verification (SV) systems
in practical voice biometrics applications. Several studies have
proposed spoofing CMs to detect spoofed speech generated us-
ing speech synthesis [1] or voice conversion [2] techniques as
well as speech utterances replayed through voice recording de-
vices [3]. Most of these studies employed CM systems as inde-
pendent preprocessing or postprocessing modules for SV sys-
tems.

More recently, joint system-level integration of CM and SV
systems have been studied [4–6]. In [4], an i-vector [7] space
was explored to model synthesis-channel subspace for voice
conversion attacks and jointly perform SV and anti-spoofing.
A multitask learning [8] approach was adopted in [5] to learn
neural network (NN)-base embeddings containing both speaker
and spoofing information. In [6], an NN-based backend was
proposed to classify the combined set of CM and SV embed-
dings, extracted from the test and enrollment utterances, to one
of the target, nontarget, and spoofed trial classes.

In line with the abovementioned studies, a series of
ASVspoof 2015–2021 challenges [9–12] and spoofing-aware
speaker verification (SASV) challenge 2022 [13] provided pro-
tocols for the evaluation of SV systems in spoofing attack sce-
narios. Specifically, unlike the previous ASVspoof challenges
[9–12], the SASV challenge [13] provokes a paradigm change
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from the development of CMs for a fixed SV system toward the
joint system-level integration of CM and SV systems.

This paper describes the Hanyang University solution for
the SASV challenge 2022 [13]. Our SASV system is designed
to have characteristics similar to a cascade of an anti-spoofing
and SV system, but aims to learn spoofing-aware speaker em-
beddings (SASEs) that can effectively produce SASV scores as
cosine similarity metrics. The proposed SASE model comprises
several NN layers and integrates embeddings extracted from the
pretrained anti-spoofing and speaker embedding models. More
specifically, the SASE model computes weighted summation of
an (unmodified) input speaker embedding and modified speaker
embedding by employing the probabilities of input speech being
bonafide and spoof as the weighting factors. Herein, the mod-
ified speaker embedding is obtained by applying feature-wise
linear modulation (FiLM) [14] to an input speaker embedding,
where the parameters for the FiLM are estimated using a CM
embedding.

The rest of this paper is organized as follows: Sections 2
and 3 describe the proposed SASV system and specifications
regarding the system development and evaluation. Section 4
provides the experimental results and analysis, and Section 5
concludes the study.

2. System description
2.1. Anti-spoofing model

In this study, we use the pretrained AASIST [15] anti-spoofing
model, provided as part of the baseline system for the SASV
challenge 2022 [13], without retraining. The AASIST model
uses the first 64,600 audio samples of an utterance as input [15].
Detailed model architecture is described in [15].

2.2. Speaker embedding model

We consider two different speaker embedding model architec-
tures in this study. The first model is ResNet-34 exactly iden-
tical to that described in [16]. This model uses 64-dimensional
(64D) mel-filterbank energies (MFBEs) as input and applies
channel-dependent attentive statistics pooling [17] to the mul-
tiple hierarchies of feature maps for the speaker embedding ex-
traction [16]. Further details are described in [16]. The second
model is Res2Net, which substitutes the basic building block
of the ResNet-34 with the Res2Net module [18], except for the
first block, and uses 80D MFBEs as input. The base width,
scale, and base channel size parameters [18] are set to 16, 4,
and 48, respectively. The ResNet-34 and Res2Net have 13.64
and 12.19 million parameters, respectively.

For both models, 256D speaker embeddings are extracted
from the penultimate layer with a batch normalization (BN) [19]
layer. Unlike the anti-spoofing model described in Section 2.1,



Figure 1: Block diagram of proposed SASE model.

full-length utterances are used for the speaker embedding ex-
traction.

2.3. Proposed SASE model

2.3.1. Model architecture

Our strategy is to build an NN-based backend that reforms
speaker embeddings using the FiLM [14] technique, a simple
conditioning method for NN layers based on affine transforma-
tion. Specifically, given a pair of CM and speaker embeddings,
a CM embedding is used to calculate the FiLM parameters (i. e.,
scale and shift) as follows:

[γ>,β>]> = BN
(
f
(
W>

1 LN
(
eCM)+ b1

))
∈ R2dsv , (1)

where γ,β ∈ Rdsv are scale and shift parameters for the FiLM,
and W1 ∈ Rdcm×2dsv and b1 ∈ R2dsv are trainable weight
and bias, respectively. eCM denotes a CM embedding, and dsv

and dcm denote the dimensions of speaker and CM embeddings,
respectively. LN(·), BN(·) and f(·) denote layer normaliza-
tion (LN) [20], BN [19] and rectifier [21], respectively. Subse-
quently, the input speaker embedding is processed through the
FiLM layer and two fully connected layers as follows:
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where eSV denotes a speaker embedding, � denotes elemen-
twise multiplication, and W2,W3 ∈ Rdsv×dsv and b2,b3 ∈
Rdsv are trainable weights and biases, respectively. Finally, the
reformed speaker embedding, eSASV, is obtained as the gated
summation of the modulated and unmodulated (input) speaker
embeddings.

eSASV = pspfemod2 + pbonaeSV, (4)

where pbona and pspf denote the probabilities of input speech be-
ing bonafide and spoofed, respectively. Herein, pbona and pspf are
obtained from the pretrained AASIST [15] model. Note that as
expressed in Eq. (4), the proposed SASE model was designed to
maintain the input speaker embedding if bonafide speech is ob-
served (pbona ' 1), but reform it through CM-conditioned FiLM
if spoofed speech is observed (pspf ' 1). The block diagram of
the SASE model is shown in Fig. 1. The shaded blocks in Fig. 1
denote the output layer of the pretrained AASIST model and are
frozen during the training of the proposed SASE model.

Given a trial, the SASV score is calculated as the cosine
similarity between the pair of reformed speaker embeddings.

Table 1: Statistics of ASVspoof2019 LA [11] dataset

Partition
#speakers #utterances Attack

typesMale Female Bonafide Spoofed
Train 8 12 2,580 22,800 A01–A06
Dev 4 6 2,548 22,296 A01–A06
Eval 21 27 7,355 63,882 A07–A19

Table 2: Description of SV-EER, SPF-EER, and SASV-EER

Metric (Abbreviation) Target Nontarget Spoof
SV-EER (EERSV) + -

SPF-EER (EERSPF) + -
SASV-EER (EERSASV) + - -

2.3.2. Loss function

To train the proposed SASE model, a minibatch is composed
as described in the following. Given S speakers in the train-
ing set, we first sample s unique speakers and randomly select
m, n, and r utterances for each speaker. These utterances are
used as bonafide enrollment, bonafide test, and spoofed test ut-
terances, respectively. Subsequently, all the selected utterances
are processed through Eqs. (1) – (4), and two score matrices,
Abona ∈ Rms×ns and Aspf ∈ Rms×rs, are calculated to con-
sider all possible combinations of target, nontarget, and spoofed
trials for the selected ms enrollment utterances. The elements
of Abona and Aspf are cosine similarities between pairs of SASV
embeddings. Finally, the loss function for training the proposed
SASE model is defined as follows:

a′ij = σ(w · aij + b), (5)

L =
∑

0≤i<ms,
0≤j<(n+r)s

−
tij ln(a

′
ij) + (1− tij) ln(1− a′ij)

m(n+ r)s2
, (6)

where i and j denote row and column indices of a concatenated
score matrix A = [Abona Aspf] ∈ Rms×(n+r)s, and aij denotes
an element of A. w and b are trainable scale and shift parame-
ters [22], and σ(·) denotes a sigmoid function. tij denotes the
binary target labels for aij , whose value is set to 1 for a target
trial and 0 otherwise.

3. Experimental setup
3.1. Training specifications

The SASV challenge 2022 allowed the use of the “train” and
“dev” partitions of the ASVspoof2019 logical access (LA) [11]
dataset as well as the VoxCeleb2 [23] dataset for the system
development. The use of any non-speech audio data was also
allowed for data augmentation purposes.

The speaker embedding models described in Section 2.2
were trained using the “dev” partition of the VoxCeleb2 [23]
dataset. Data augmentation was conducted using the MUSAN
[24] babble and music samples, noise samples from the deep
noise suppression challenge 2020 [25], and simulated room im-
pulse responses [26], creating 4 additional copies of the original
audio samples. Note that the augmented training samples for the
ResNet-34 and the Res2Net models were created using differ-
ent random seeds. Further details regarding the model training
procedure are described in [16].



Table 3: SASV performance of speaker embedding models and
AASIST [15] anti-spoofing model

Model
EERSV(%) EERSPF(%) EERSASV(%)
dev / eval dev / eval dev / eval

AASIST 46.3 / 48.9 0.07 / 0.66 15.9 / 24.5
ECAPA-TDNN 1.27 / 0.84 19.0 / 29.3 16.2 / 22.4

ResNet-34 0.54 / 0.43 15.3 / 25.4 12.5 / 19.2
Res2Net 0.20 / 0.20 14.8 / 24.7 12.1 / 18.7

The AASIST anti-spoofing model was trained using the
“train” partition of the ASVspoof2019 LA [11] dataset, whose
statistics are summarized in Table 1. For further details regard-
ing the training procedure, please refer to [15].

The proposed SASE model was trained using the same
“train” partition of the ASVspoof2019 LA [11] dataset. We
set s = 20, m = 1, n = 1, and r = 4 in Eq. (6), and ini-
tialized w and b in Eq. (5) to 15 and −5, respectively. A single
training epoch was defined as iterations over 200 minibatches,
and the training was conducted for 50 epochs. Nadam [27] op-
timizer was used for the training with an initial learning rate
of 0.00008 and a momentum decay of 0.004, and W1, W2,
and W3 in Eqs. (1) and (3) were `2-regularized with a scale of
0.00005. The input 160D CM embeddings were extracted from
the penultimate layer of the AASIST [15] model.

3.2. Evaluation

Three evaluation metrics were employed to measure SV, anti-
spoofing, and SASV performances in terms of the equal error
rate (EER) [13]. These metrics are denoted as SV-EER, SPF-
EER, and SASV-EER, respectively, and differ in the definition
of negative classes. Table 2 summarizes the types of positive
and negative classes considered for the metrics computation1.

The evaluation was conducted using the “eval” partition tri-
als of the ASVspoof2019 LA [11] dataset, which comprised
5,370 target, 33,327 nontarget, and 63,882 spoofed trials. The
“dev” partition trials comprised 1,484 target, 5,768 nontarget,
and 22,296 spoofed trials [11], and was used to select the model
exhibiting the lowest SASV-EER. Detailed statistics regarding
the “dev” and “eval” partitions are summarized in Table 1.

For comparison purposes, we also employed the baseline
ECAPA-TDNN [17] speaker embedding model to train the pro-
posed SASE model, with full-length utterances as input. More-
over, the tandem SASV systems were implemented, for which
the SASV score was set identical to the SV score if the CM
score was above a predefined CM threshold, but to −1 other-
wise. The CM score and SV score were calculated as described
in the following. Given a trial, the SV score was calculated as
the cosine similarity between the speaker embeddings extracted
from the test and enrollment utterances, and the CM score was
obtained as the probability of the test utterance being bonafide,
pbona. The CM thresholds for the tandem systems were deter-
mined using the “dev” partition trials under the lowest SASV-
EER criterion. Consequently, we obtained the CM thresholds
of 0.9135, 0.908, and 0.96 for the ECAPA-TDNN-, ResNet-
34- and Res2Net-based tandem systems, respectively. Note that
the tandem systems built with the different speaker embedding
models had different optimal CM thresholds because the SASV
performance depended on the SV scores assigned to the false
positives (i. e., falsely detected spoofed trials).

1Python 3.9.5, SciPy 1.7.3, and sklearn 1.0.2 were used.

Figure 2: Histograms of SV scores.

4. Experimental results and analysis
4.1. Standalone CM and SV systems

Table 3 summarizes the SASV performance of the CM system
based on the AASIST [15] anti-spoofing model and SV sys-
tems built with the three different speaker embedding models.
Because the CM score represented the probability of a test ut-
terance being bonafide, but did not consider the relationship
between test and enrollment utterances, the SV-EERs of the
AASIST model were close to 50%. Comparing the SV per-
formances of the three speaker embedding models, both our
ResNet-34 and Res2Net were significantly superior to the base-
line ECAPA-TDNN model. Specifically, the Res2Net outper-
formed the others by considerable margins on both “dev” and
“eval” partitions.

Fig. 2 shows the histograms of the SV scores obtained from
the three different SV systems. First, for both ResNet-34 and
Res2Net models, the SV scores for the spoofed trials measured
on the “dev” partition seemed approximately bi-modal and were
more heavily distributed toward the nontarget scores side than
the target scores side. This indicates that although the speaker
embedding models were not trained to discriminate spoofed
speech, their speaker embeddings could help reject spoofed tri-
als of target speakers to an extent. Indeed, the ECAPA-TDNN-
, ResNet-34-, and Res2Net-based SV systems achieved SPF-
EERs of 19.0%, 15.3%, and 14.8%, respectively, as presented
in Table 3. Second, on the same “dev” partition, the overlap
between the scores for the spoofed trials and those for the target
trials was apparently larger in the ECAPA-TDNN model than in
the ResNet-34 and Res2Net. This supports the SPF-EERs of the
ResNet-34- and Res2Net-based SV systems being significantly
lower than the SPF-EER of the ECAPA-TDNN-based SV sys-
tem. Finally, on the “eval” partition, the scores for the spoofed
trials were generally more heavily distributed toward the tar-
get scores side, unlike the trends observed on the “dev” parti-
tion. This suggests that the types of spoofing attacks included
in the “eval” partition are more challenging to reject compared
to those included in the “dev” partition.



Table 4: SASV performance of tandem systems

Speaker
embedding

EERSV(%) EERSPF(%) EERSASV(%)
dev / eval dev / eval dev / eval

ECAPA-TDNN 1.28 / 0.92 0.07 / 0.62 0.61 / 0.80
ResNet-34 0.54 / 0.54 0.07 / 0.59 0.34 / 0.56
Res2Net 0.28 / 0.43 0.13 / 0.37 0.19 / 0.39

Table 5: SASV performance of proposed systems

Speaker
embedding

EERSV(%) EERSPF(%) EERSASV(%)
dev / eval dev / eval dev / eval

ECAPA-TDNN 1.30 / 0.91 0.07 / 0.36 0.61 / 0.69
ResNet-34 0.62 / 0.54 0.07 / 0.38 0.34 / 0.47
Res2Net 0.28 / 0.28 0.07 / 0.28 0.18 / 0.28

Figure 3: Histograms of SASV scores.

4.2. Tandem and proposed SASV systems

Tables 4 and 5 summarize the SASV performances of the tan-
dem and proposed SASV systems. The SASV-EERs of the
proposed systems were generally improved on the “eval” par-
tition compared to the tandem systems, but maintained on the
“dev” partition. Apparently, this was attributed to the decrease
in the SPF-EERs, as the SV-EERs were generally maintained
or slightly increased, except for some cases. These trends in-
dicate that the proposed SASE model operated as intended,
because ideally, the SASV embedding should be identical to
the speaker embedding for a bonafide trial. Indeed, we con-
firmed that the SASV scores for the bonafide trials, correctly
detected by the CM system, were almost the same for both tan-
dem and proposed systems. Thus, it can be inferred that the
proposed SASE model successfully learned to produce embed-
dings better capable of dealing with bonafide and spoofed trials
than the tandem systems. Note that both false negatives and
false positives caused by the tandem CM systems were cor-
rected by the proposed method on the “eval” partition, but not in
the “dev” partition, probably because there was small room for

Figure 4: DET curves of tandem and proposed SASV systems on
evaluation set. “4” denotes operating points for SASV-EERs.

improvement (i. e., SPF-EERs of 0.07% were small enough).
The histograms of the SASV scores obtained from the pro-
posed systems are shown in Fig. 3. These historgrams show that
the learned SASEs produced SASV scores significantly smaller
for the spoofed trials than for the nontarget trials. Finally, we
found that the changes in SV-EERs (from 0.54 to 0.62 for the
ResNet-34-based systems on the “dev” and 0.43 to 0.28 for the
Res2Net-based systems on the “eval” partitions) were attributed
to the difference in the thresholds at which the SASV-EERs
were measured. For example, the thresholds were determined
to 0.441 and 0.454 for the Res2Net-based tandem and proposed
SASV systems, respectively, and thus, some nontarget trials,
whose SASV scores were between 0.441 and 0.454, were cor-
rected as true negatives. The opposite was observed between the
ResNet-34-based tandem and proposed systems. Fig. 4 shows
the detection error tradeoff (DET) curves on the “eval” parti-
tion, which demonstrate improved operating characteristics of
the proposed systems over the tandem systems.

5. Conclusions
In this study, we proposed an NN-based SASV system to im-
prove a tandem SASV system by maintaining SV performance
for the correctly detected bonafide trials, while improving er-
roneous hard decisions of the tandem CM system. We submit-
ted the results obtained from the proposed SASV system built
with our Res2Net-based speaker embedding model, which ex-
hibited the lowest SASV-EER on the “dev” partition among the
considered systems. The experimental results demonstrated the
effectiveness of the proposed method, suggesting that the joint
integration of CM and speaker embeddings is a promising di-
rection for SASV.
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