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Abstract

This paper describes the backend ensemble system of speaker
verification and spoofing countermeasure submitted to Spoof-
ing Aware Speaker Verification Challenge 2022. The primary
work of the backend ensemble system is mining as much as ef-
fective speaker and detecting characteristics from speaker em-
beddings and countermeasure embeddings. We exploit differ-
ent embedding mixture methods, neural network frameworks
and enhanced attention mechanisms to aggregate valuable in-
formation for speaker verification. Specifically, we propose
to stack and transfer speaker embeddings and countermeasure
embeddings into circulant matrices to facilitate using convolu-
tional kernels selectively fusing the embeddings’ salient regions
into channel-wise. Meanwhile, we design a global attention
module to capture interactions of different embeddings. With
the proposed global attention mechanism, the SASV EER, SPF
EER and SV EER of 2D convolutional neural network with the
global attention are dramatically decreased by 2.258%, 0.372%,
4.444%. In addition, with the proposed circulant embedding
matrices, the SASV EER, SPF EER and SV EER of 2D con-
volutional neural network with variant squeeze-and-excitation
attention reach 0.734%, 0.416% and 1.104%. After fusion of
four well-trained models in the paper, the best SASV EER, SPF
EER and SV EER we achieve are 0.559%, 0.354% and 0.857%
on the evaluation set.

Index Terms: speaker verification, spoofing countermeasure,
backend ensemble

1. Introduction

Automatic Speaker Verification (ASV) attempts to decide
whether a pair of speech is from the same speaker [1]. With
the development of deep neural network (DNN) and easy avail-
ability of computing resources and massive data, ASV technol-
ogy has delivered the high accuracy required in voice-enabled
IoT gadgets control, speech authorization and forensic applica-
tions [2, 3, 4]. However, ASV systems are vulnerable under var-
ious kinds of malicious spoofing attacks, i.e., specially crafted
utterances generated by adversaries to deceive the ASV system
and to provoke false accepts [5, 0, 7, 8].

The data scenarios for speaker spoofing include logical ac-
cess (LA), physical access (PA), speech deep fake (DF) [9].
The generated human-like speech deceiving ASV systems poses
a great threat to the security of society if misused malignantly.
Fortunately, this problem has intrigued the attention of many
researchers. There are many anti-spoofing challenges [10, 11]
held to boost the development of countermeasure systems (CM)
to help detecting spoofing attacks [12, 13, 14, 15]. While
most CM systems achieve fabulous performance in detecting

* Corresponding author.

spoofing speech, they seriously affect the performance of the
zero-effort impostors’ detection when they work with ASV sys-
tems [16]. SASV [5] provides a common platform for re-
searchers to extend the focus of ASVspoof upon CMs to the
consideration of integrated systems where both CM and ASV
subsystems are optimized jointly to improve reliability [5].
SASV challenge focuses on spoofing attacks generated using
speech synthesis/text-to-speech (TTS), voice conversion (VC)
which are LA spoofing. It proposes to jointly optimize the au-
tomatic ASV system and spoofing CM system, which aims to
develop a new spoofing-aware speaker verification system.

Recently, the ensemble works of ASV and CM sys-
tems considering both performances have sprouted thanks to
the driven of challenges like SASV and ASVspoofing chal-
lenges [5] in the speech community. Li et al. [17] proposed
a multi-task learning neural network to make a joint system of
ASV and anti-spoofing, which verified that joint optimization
was more advantageous than cascaded systems with traditional
methods. Kanervisto et al. [ | 8] optimized the tandem system di-
rectly by creating a differentiable version of t-DCF and employ-
ing techniques from reinforcement learning. Chettri et al. [19]
combined both deep neural networks and traditional machine
learning models as ensemble models through logistic regression
to integrate spoofing detection in a ASV system. Li et al. [20]
proposed a multi-task learning framework with contrastive loss
to joint decision of anti-spoofing and ASV. Gomez-Alanis et
al. [21] developed an integration neural network and a loss func-
tion based on the minimization of the area under the expected
(AUE) performance and spoofability curve (EPSC) to jointly
process the embeddings extracted from ASV and anti-spoofing
systems. Zhang et al. [22] proposed a probabilistic framework
for fusing the ASV and CM subsystem scores.

In this challenge, we focus on exploring the backend em-
bedding ensemble of ASV and countermeasure systems. Our
target is to build a backend ensemble system trained with
speaker embeddings and CM embeddings to make a joint de-
cision of speaker verification. We attempt different embedding
mixture methods, ensemble model frameworks and attention
mechanisms to dig effective characteristics from speaker em-
beddings and CM embeddings for speaker verification. The
well-experimental results demonstrate the effectiveness of our
proposed global attention and the circulant matrices transfor-
mation methods.

The rest of this paper is organized as follows: Section 2 de-
scribes the overview of our system. Section 3 details different
backend ensemble frameworks. Section 4 presents the experi-
mental setup of this paper. Section 5 elaborates the experimen-
tal results. Finally, section 6 concludes this paper.



2. System Overview

The system overview in this paper is illustrated in Figure 1. It
consists of embedding extractors and backend ensemble mod-
ules. The outputs are labels of test trials denoting whether the
enrollment and test utterances belong to the same speaker. The
speaker embedding extractor and CM embedding extractor we
use are well pretrained ECAPA-TDNN [2] and AASIST [23] of-
fered by official organizers [5]. The two embedding extractors
in the dotted boxes are not participating in training. Our con-
tributions are to explore different embedding mixture methods,
ensemble network frameworks and attention mechanisms of the
backend ensemble module to dig more effective information for
speakers’ certification.
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Figure 1: The overview of backend ensemble system.
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We exploit three kinds of backend ensemble modules illus-
trated in Figure 2. Firstly, we enlarge the baseline2 model which
is a 3-layer DNN [5], but the performance saturates as the model
gets deeper. We believe that mining the interactions of speaker
embeddings and CM embeddings facilitate the correct decision
of speaker authentication. Then we stack the above three em-
beddings and use 1D convolution neural work (1D CNN) to de-
rive the decision of speaker verification. Meanwhile, we pro-
pose a global attention submodule after convolutional blocks to
learn the independent information among embeddings. Finally,
we propose to use circulant matrix transformation to derive two-
dimension of embedding from original one-dimension embed-
dings and then feed the stacked three two-dimensions embed-
dings into a 2D convolution neural network (2D CNN) with
squeeze-and-excitation attention (SEA) [24]. The specific de-
sign of each module will be explained in the next section.
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Figure 2: Different backend ensemble modules. (1) is the en-
larged baseline2 model. (2) is the 1D CNN with global atten-
tion. (3) is the circulant matirx transformation in 2D CNN with
channel attention

3. Backend Ensemble Frameworks
3.1. Extend Baseline Model

The baseline2 model provided by challenge officials [5] is a 3-
layer DNN model with neural node configuration [256,128,64].
We extend the node configuration into [512, 256, 128, 64]
and [1024, 512, 256, 128] which are expressed as Eex-
tend (512)_DNN and Extend(1024)_DNN respectively.

3.2. 1D CNN with Global Attention

Next we adopt 1D CNN to process the stacked three kinds
of embeddings. The motivation is to use convolutional ker-
nels selectively fusing the different embedding information
into channel-wise. Then we propose a global attention mod-
ule to learn global context information in channel-wise and
feature-wise. Specifically, the global attention learns atten-
tion masks along with the channel-wise and feature-wise re-
spectively, which aims to learn the interdependence of three
embeddings and pure the useful information for speaker ver-
ification. The global attention is illustrated in Figure 3.
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Then we use linear connection layers to learn the channel-wise
and feature-wise attention in parallel.
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where 7 is the middle layer dimension reduction factor and p
is the sigmoid operation. The weighted intermediate tensor
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where - are dot products with automatic dimension expansion.

3.3. 2D Convolutional Neural Network with SE attention

In order to learn the interactions among enrollment speaker em-
beddings, test speaker embeddings and CM embeddings, we
transfer the above three embeddings into circulant matrices.
Circulant matrices are square matrices in which all row vec-
tors are composed of the same elements and each row vec-
tor is rotated one element to the right relative to the preced-
ing row vector [25]. Suppose the enrollment speaker em-
bedding, test speaker embedding and test CM embedding are
e; = {z1,%2,%3..Ta}1.a, ti = {51, 82, 83...Sp}1:6 and ¢; =



{m1,ma, m3...mgq }1.q, the circulant matrix transformation are
formulated as following:
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As each row of the circulant matrix shifts one element, with
newly-defined interaction operations, we almost explore all pos-
sible interactions between different embeddings. After that, we
stack the three circulant matrices into one tensor and feed it
into a 2D convolutional neural network. Meanwhile, we embed
channel-wise attention [24] behind the last convolutional layer
to learn the dependency of different embeddings.

4. Experimental Setup
4.1. Datasets

All experiments presented further are conducted on
ASVspoof 2019 logical access (LA) train and develop-
ment partitions [6]. The development and evaluation
protocols are ASVspoof 2019.LA.asv.eval.gi.trl.txt and
ASVspoof 2019.LA.asv.eval.gi.trl.txt from ASVspoof 2019
challenge [6]. We have attempted to do data augmentation on
raw audio with MUSAN [26] and Room Impulse Response and
Noise (RIRs) databases [27], but there is no improvement in
the experimental results. In the future, we will further research
on the data augmentation method in this topic.

4.2. Model Configurations

‘We have trained six models in total. The configurations of them
are in following:

* Extend (512)_ DNN The neural nodes of 4-layer DNN
are [512,256,128,64].

* Extend (1024)_DNN: The neural nodes of 5-layer DNN
are [1024,512,256,128,64].

¢ 1D_CNN There are 3-layer 1D convolution, 1-layer
adaptive average pooling and 3-layer DNN. The
channels and kernels of 3-layer 1D convolution are
[256,128,64] and [3,3,3]. Each convolutional layer is
followed with a normalization layer and a LeakReLU
activation layer. The neural nodes of 3-layer DNN are
[512,256,64].

¢ 1D_CNN_SEA The SE attention layer is embedded after
the third convolutional network layer. The inner chan-
nel reduction ratio of SE attention is eight. The other
configurations of CNN model are the same as 1D_CNN
model’s.

* 1D_CNN_GA The global attention layer is embeded af-
ter the third convolutional network layer. The inner

channel reduction ratio of global attention is eight. The
other configurations of CNN model are the same as
1D_CNN model’s.

¢ 2D_CNN There are 4-layer 2D convolution, 1-layer
adaptive average pooling and 3-layer DNN in the
2D_CNN model. The channel and kernel configures
are [32,64,128,256] and [5,3,3,3]. The configuration of
adaptive average pooling is [16,16]. The neural nodes of
DNN are [256,128,64].

* 2D_CNN_SEA The SE attention layer is embedded after
the third convolutional network layer. The inner chan-
nel reduction ratio of SE attention is eight. The other
configurations of CNN model are the same as 2D_CNN
model’s.

¢ 2D_CNN_VSE In addition to SE attention, we also tried
a variant of SE attention [28] which has been demon-
strated to be effective in improving the performance of
speaker verification system [29].

4.3. Training Setup

We adopt the well pre-trained ECAPA-TDNN [2] and AA-
SIST [23] models provided by the challenge official [5] as our
embedding extractors. In training step, the embedding extrac-
tors are fixed without joint training. The batchsize is 1024 and
initial learning rate is le-3. The optimizer is Adam with keras
scheduler and weigt decay le-3. The loss function is cross en-
tropy with bias-weight [0.1, 0.9] because of the inbalance of
bonafide and spoofing datasets in ASVspoof 2019 train set.

4.4. Score Metric

The classical equal error rate (EER) are used as the primary
metric of SASV system. There are three kinds of EER metrics,
i.e., SASV EER, SPF EER, SV EER. The SASV-EER does not
distinguish between different speaker (zero-effort, non-target,
or impostor) access attempts and spoofed access attempts. SPF
EER is metric of spoofing attacks and target trials. SV EER is
the metric of traditional ASV trials without spoofing attacks.

5. Experimental Results

Experimental results in Table 1 are derived from the models
trained with ASVspoof 2019 train set partition. We can see that
the SASV EER of Extend (512)_DNN model achieves 1.529%
absolute reductions compared with baseline2 model in [5] on
ASVspoof 2019 evaluation set. After we stack speaker embed-
dings and CM embedding and feed them into a 1D CNN model,
the SASV EER on SASVspoof 2019 evaluation set dramatically
reduces into 1.361%. The main reason for the performance im-
provement thanks to the reductions of SV EER. But the SPF
EER has slight rise. When we embeded SE attention into 1D
CNN model, the SPF-EER reduces to lower. Meanwhile, the
SVSA EER of evaluation set has 0.224% reductions compared
with that of 1D CNN. We replace the SE attention with our pro-
posed global attention, the SASV EER of evaluation set has fur-
ther 0.093% absolute reductions. The SASV EER of 2D CNN
with circulant matrix transformation is better than that of 1D
CNN model on evaluation set. Then we add SE attention mod-
ule in 2D CNN to learn the global independence of different
embeddings. The SASV EER of 2D CNN with SE attention
even achieves 0.998% on evaluation set as well as SPF EER
and SV EER achieve the best performance compared with other
models in Table 1.



Table 1: EER% results (trained with train set) on SASV 2022 development and evaluation partitions.

Model Index Model Name DEV EVAL
SASV-EER SPF-EER SV-EER SASV-EER SPF-EER SV-EER
A Model_baseline2 4.85 0.13 12.87 6.37 0.78 11.48
B Extend (512) _DNN 3.973 0.193 9.097 4.841 0.797 8.429
C Extend (1024)_DNN 3.705 0.1634 9.652 4.926 0.710 8.683
D ID_CNN 0.606 0.135 1.456 1.361 1.135 1.750
E ID_CNN_SEA 0.876 0.110 1.699 1.117 0.519 1.638
F 1D_CNN_GA 1.022 0.103 1.954 1.024 0.819 1.378
G 2D_CNN 0.687 0.067 1.752 1.212 0.416 2.019
H 2D_CNN_SEA 0.846 0.135 2.167 0.998 0.497 1.582

Table 2: EER% results (trained with train and dev sets) on SASV 2022 development and evaluation partitions.

Model Index Model Name DEV EVAL
SASV-EER  SPF-EER SV-EER SASV-EER SPF-EER SV-EER
B_Aug Extend (512)_DNN 0.011 8.97e-5 0.017 3.026 0.837 5.497
D_Aug 1D_CNN 0.011 0.067 1.666 0.837 0.350 1.303
E_Aug ID_CNN_SEA 0.078 8.97e-5 0.134 0.812 0.570 0.981
F_Aug ID_.CNN_GA 0.067 0.066 0.022 0.768 0.465 1.053
G_Aug 2D_CNN 0.122 0.033 0.202 0.760 0.346 1.224
H_Aug 2D_CNN_SEA 0.078 0.067 0.202 0.758 0.476 1.125
I_Aug 2D_CNN_VSE 0.134 0.002 0.269 0.734 0.416 1.104
Table 3: Fusion EER% results on SASV 2022 development and evaluation partitions
Model Index Fusion Method DEV EVAL
SASV-EER  SPF-EER SV-EER SASV-EER SPF-EER SV-EER
D-Avg&G-Aug  Bosaris . ; 0.838 0.838 1.136
& H_Aug & I_Aug (Linear Regression)
D-Aug & G-Aug Average Score 0.067 0.067 0.135 0.559 0.354 0.857
& H_Aug & I_Aug

To further improve the experimental results of the pro-
posed systems, we add the ASVspoof 2019 development set
into training set to train the above models. The results are il-
lustrated in Table 2. The SASV EER of Extend (512) DNN
has 1.821% absolute reductions compared with only the train
set of ASVspoof 2019 training. After augmented with the
ASVspoof 2019 development set, 1D CNN model, 1D CNN
with SE attention model, 1D CNN with global attention model,
2D CNN model, 2D CNN with SE attention model all achieve
that SASV EERs of evaluation set are less than 0.991%. Mean-
while, both the SPF EER and SV EER have further reductions.
The state of the art model is the 2D CNN with SE attention
whose SASV EER, SPF EER and SV EER are 0.734%, 0.416%
and 1.104%. The results demonstrate the proposed global atten-
tion and circulant matrix transformation have significant contri-
butions for the backend ensemble of speaker verification and
countermeasure systems.

Finally, we fuse the above models trained with
ASVspoof 2019 train set and development set. We have
tried two fusion methods which are linear regression in Bosaris
toolkit [30] and averaging scores respectively. The fusion
results are showed in Table 3. After averaging the scores of
the 1D CNN model, 1D CNN with global attention model, 2D

CNN model and 2D CNN with SE attention model and 2D
CNN with VSE attention, the SASV EER, SPF EER and SV
EER reach to 0.559%, 0.354%, 0.857%. The linear regression
is worse than averaging scores because ASVspoof 2019
development set is used to train the models, which leads to the
model overfitting to the development set.

6. Conclusions

In this paper, we explore the backend ensemble of ASV and
CM systems, which are trained with pretrained speaker embed-
dings and CM embeddings to make a decision of speaker veri-
fication. We adopt different embedding mixture methods, neu-
ral network frameworks and enhanced attention mechanisms to
mine speaker and detecting characteristics in different embed-
dings to make our ensemble models with spoofing aware veri-
fication capacity. In particular, our proposed global attention in
1D CNN and circulant matrix transformation make significant
improvements on the SASV EER of the evaluation set.
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