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Abstract

In this paper, we present the Elevoc systems submitted to
the Spoofing Aware Speaker Verification Challenge (SASVC)
2022. Our submissions focus on bridge the gap between
the automatic speaker verification (ASV) and countermeasure
(CM) systems. We investigate a general and efficient norm-
constrained score-level ensemble method which jointly pro-
cesses the scores extracted from ASV and CM subsystems,
improving robustness to both zero-effect imposters and spoof-
ing attacks. Furthermore, we explore that the ensemble sys-
tem can provide better performance when both ASV and CM
subsystems are optimized. Experimental results show that our
primary system yields 0.45% SV-EER, 0.26% SPF-EER and
0.37% SASV-EER, and obtains more than 96.08%, 66.67% and
94.19% relative improvements over the best performing base-
line systems on the SASVC 2022 evaluation set. All of our
code and pre-trained models weights are publicly available and
reproducible 1.
Index Terms: Speaker verification, anti-spoofing, ensemble of
speaker verification and anti-spoofing, SASVC 2022.

1. Introduction
Biometric authentication [1] aim to authenticate the identity
claimed by a given individual based on the samples measured
from biological processes and/or organs, which is becoming
popular in scenario of protecting the security of computers,
smart devices, and networks, such as fingerprint, voiceprint
and face recognition. Even though current automatic speaker
verification (ASV) systems have been robust to noisy environ-
ments [2, 3, 4, 5], their vulnerability to malicious spoofing at-
tacks remains a serious concern nowadays [6, 7]. Even state-
of-the-art ASV systems can be vulnerable to spoofing attacks
[8] generated using speech synthesis / text-to-speech (TTS),
voice conversion (VC) or replay attacks. Some such attacks
can degrade ASV reliability considerably [9]. Therefore, anti-
spoofing should be considered carefully before putting ASV
into practical usage.

In recent years, countermeasure (CM) systems have hence
been developed which classifies given utterances as spoofed or
not spoofed where many deep neural network (DNN) based sys-
tems have achieved promising results [10, 11, 12, 13]. While
ASV and CM systems have been well studied separately so far,
the integration of both systems still requires further research.
Todisco et al. [14] propose a separate modeling of two Gaus-
sian back-end systems with a unified threshold for both ASV
and CM tasks. Two joint ASV and CM systems are studied in
the i-vector [15, 16] and x-vector space [17, 18, 19]. Moreover,
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Figure 1: Overall framework of our proposed score-level en-
semble system.

Shim et al. [20] propose an end-to-end framework that jointly
optimize ASV, CM and the SASV task.

In this paper, we describe the Elevoc team’s submissions
developed for the Spoof Aware Speaker Verification Challenge
(SASVC) 2022. The main goal of SASVC 2022 is to further im-
prove robustness to both zero-effort impostor access attempts
and spoofing attacks by providing a framework to support the
optimization of CM and ASV systems. The challenge is to eval-
uate SASVC using the ASVspoof 2019 LA dataset. Whilst, in
the logical access (LA) scenario, the spoof attacks are directly
injected into the ASV system, normally generated using TTS
and VC technologies.

As illustrated in Figure 1, we propose a spoofing-aware
framework for the SASV task. Since the training objectives
of the ASV and CM tasks are different, speaker embeddings
for the ASV task requires robustness to device and channel dif-
ferent; meanwhile, representation for the CM task uses such
information. Based on this, we firstly training the ASV and
CM subsystems independently. When in the SASV runtime,
the ASV subsystem scores the input enrollment and test utter-
ances, and the CM subsystem distinguishes whether the test
utterance is a spoof or a bonafide speech. Finally, ensemble
ASV and CM systems based on a score-level ensemble ap-
proach to better discriminate between bonafide target speech
and zero-effect imposters or spoofing attacks. In our work, we
investigate a general and efficient norm-constrained score-level
ensemble method that substantially improves the performance
of SASV task, which bridge the gap between the ASV and
CM systems. Moreover, by exploring different structural fea-
ture encoders for ASV and CM subsystems, it is further veri-
fied that ensemble SASV system can be delivered better perfor-



mance when both ASV and CM subsystems are optimized. Ex-
perimental results show that our primary system yields 0.45%
SV-EER, 0.26% SPF-EER and 0.37% SASV-EER, and obtains
more than 96.08%, 66.67% and 94.19% relative improvements
over the best performing baseline systems on the SASVC 2022
evaluation set.

The remainder of this paper is organized as follows: Section
2 introduces the methodology in our submissions. Then, in Sec-
tion 3, we present the experimental setup. After that, Section 4
evaluates the ensemble SASV systems. Finally, we conclude
this paper in Section 5.

2. Methodology
Figure 1 illustrates the overall framework of the Elevoc’s sub-
mission, which is mainly composed of ASV and CM systems
and score-level ensemble modules. In this section, we first in-
roduce the ASV and CM systems with different topologies ex-
plored. Then, a detailed description of different score-level en-
semble methods and analyses are provided.

2.1. Standalone Automatic Speaker Verification (ASV) sys-
tems

The goal of an ASV system is to determine whether a test ut-
terance is produced by the claimed speaker or not. The conven-
tional ASV framework can be decomposed into a frame-level
feature extractor, a pooling layer and utterance-level feature ex-
tractor [2]. For our submissions, all of ASV systems are built
upon the foundation of our previous work in Short-duration
Speaker Verification Challenge (SdSVC) 2021 [21]. By fixing
the attentive statistic pooling layer [22] and utterance-level rep-
resentation layers, we choose three frame-level feature extrac-
tors that perform well at SdSVC 2021.
SE-ResNet-34. We use ResNet-34 [23] with Squeeze-
Excitation (SE) module [24] for frame-level feature extraction.
The SE block can adaptively re-calibrate channel-wise feature
responses by explicitly modeling inter-dependencies among
channels.
Res2Net-based extractor. We employ employ Res2Net-50
[25] as our feature extractor backbone. Moreover, we integrate
Res2Net with cardinality dimension [26], as well as SE block
[24], Res2NeXt-50 and SE-Res2Net-50, respectively.

2.2. Standalone Countermeasure (CM) systems

Spoofing detection is a binary classification task which aims
at differentiating spoofed speech from bonafide speech. For
each test utterance, two hypotheses are computed: either it is
bonafide speech, or it is a spoof attack. In our work, CM sys-
tem is mainly based on the state-of-the-art (SOTA) system on
the ASVspoof 2019 LA dataset, which is AASIST [13]. At the
same time, the lightweight variant of AASIST (AASIST-L) is
also adopted.
AASIST. This is a new end-to-end spoofing detection sys-
tem based upon graph neural networks, which consists of two
modules, high-level feature encoder and graph module. The
RawNet2-based [12] encoder used for extracting high-level fea-
ture maps from raw input waveforms. Then, a heterogenous
stacking graph attention layer (HS-GAL) is used to model spec-
tral and temporal sub-graphs branches which consists of a het-
erogeneous attention mechanism and a stack node to accumu-
late heterogeneous information. To enable different branches
to learn different groups of spoofing artefacts, each branch in-
cludes two HS-GALs and graph pooling layers, followed by a
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Figure 2: Score distributions from Automatic Speaker Verifi-
cation (ASV) and Countermeasure (CM) outputs when speaker
embeddings without normalization.

max graph operation (MGO).
Efficient feature encoder. Even though the performance of
AASIST is well, we find that training directly based on the raw
waveforms, the training speed is very slow. Therefore, we ex-
plore to improve the feature encoder module which based on
the frequency domain input and a lighter architecture. We adopt
SE-ResNet-34 and the lightweight version of VGG [27] as high-
level feature encoders, which shows that the training efficiency
is greatly increased and the performance comparable to AA-
SIST. At the same time, we further verify the effectiveness of
the HS-GAL layer and MGO mechanism based on the graph
neural networks. The reader is referred to Section 3 for further
detail.

2.3. Score-level Ensemble

The ensemble of ASV and CM systems can be achieved ate
score-level or at the model/feature level. In our work, we pro-
pose a general and efficient score-level ensemble solution capa-
ble of achieving a significantly improvement in SASV task.

It’s intuitive that we normally use the score-sum ensembles
using similarity scores generated from speaker embeddings pro-
duced by a pre-trained ASV subsystem and the scores produced
by a pre-trained CM subsystem. When the score distribution
of the two subsystems as shown in Figure 2 is inconsistent, the
overall performance collapse. However, we use the normalized
inner-product or cosine similarity as the similarity measurement
for speaker embeddings, which significantly boost the perfor-
mance.

To illustrate this, we perform an experiment which com-
pares the speaker embeddings without normalization, i.e. using
the unnormalized inner-product as the similarity measurement.
Both ASV and CM subsystems scores are derived from SASV
2022 GitHub repository 2. We follow the ASV development
protocol of ASVspoof2019 LA dataset [9]. The results are listed
in Table 1.

As shown in the table, speaker embedding normalization
significantly improve the performance of SPF-EER when using
the score-sum strategy. Embedding normalization seems to be a
crucial step to ensemble independent ASV and CM systems. At
the same time, we also compare cosine similarity which shows
better performance.

Furthermore, based on the independence of the ASV and
CM, we regard them as two independent probability events. The

2https://github.com/sasv-challenge/SASVC2022 Baseline



Table 1: Effect of different score-level ensemble methods on
three different EERs (%) of SASVC 2022 development parti-
tions.

Score
Ensemble

Speaker Embedding
SV-EER SPF-EER SASV-EERSimilarity L2-Norm

Sum

Cos N/A 1.82 0.19 1.08

Inner-Product
W 1.49 0.09 0.79

W/O 2.84 20.41 17.63

Mul
Cos N/A 1.82 0.13 1.08

Inner-Product W 1.49 0.16 0.81

goal of SASV system is only make the bonafide speech from
target speaker has a higher probability score, and vice versa.
Therefore, the similarity score of ASV is directly multiplied by
the output score of CM system, which is the probability of tar-
get speaker and bonafide speech. As shown in Table 1, it also
shows good performance when directly ensemble the two sys-
tem scores by probabilistic multiplication. It’s worth noting that
when the similarity score of ASV is based on cosine similarity,
linear transformation is required to the target interval range [0,
1] before probabilistic multiplication.

3. Experiments
Described in this section are the datasets, implementation de-
tails and metrics used for our experiments, together with spe-
cific implementation details of ASV and CM systems.

3.1. Datasets

The SASVC 2022 training and evaluation datasets originate
from the ASVspoof 2019 LA partition [9] and VoxCeleb 2 [28].

For training the standalone CM system, we employ the
ASVspoof 2019 LA partition dataset. The LA contains 17 at-
tacks generated with SOTA TTS and VC technologies, where
only six of them are known attacks (six logical attacks for train-
ing). In the training partition, which contains 22800 spoof and
2580 bonafide utterances.

For training the standalone SV system, we only employ the
VoxCeleb 2 dataset, which contains over 1 million utterances
for over 6,000 speakers. Moreover, we employ diverse additive
noises and reverberations to make the ASV systems more ro-
bust. The additive noises are selected from the MUSAN corpus
[29]; The reverberations are generated by using simulated small
and medium room impulse responses [30].

The ASVspoof 2019 LA development partition is used for
model selection during validation and system combination. We
don’t use any external data or data augmentation technique for
training systems.

3.2. Implementation details

All systems are implemented using PyTorch [31], a deep learn-
ing toolkit in Python. Mainly implementation details of ASV
and CM systems are consistent with the SASVC official base-
line implementation described in [32].

The ASV system adopts four different types of feature ex-
tractors: (i) ECAPA-TDNN [33], which is consistent with the
SASVC baseline ASV subsystem; (ii) SE-ResNet-34; (iii) SE-
Res2Net-50; (iv) Res2NeXt-50. All feature extractors are ex-
tracted 64 dimensional Mel-filterbanks. Pre-emphasis with a
coefficient of 0.97 is applied to the input signal. The spectro-

grams are extracted with a hamming window of 25 ms width
and 10 ms frame shift. Mean and variance normalization is
performed by applying instance normalization [34] to the in-
put features. In the meanwhile, feature augmentation [35] is
applied during model training to prevent overfitting and to im-
prove generalization with a frequency and temporal masking
dimension of 8 and 10, respectively.

During each ASV system training, AAM-Softmax [36] is
used as loss function to optimize the networks, which has out-
standing performance in ASV task [37]. Given batch size n and
N training speakers, the AAM-Softmax loss LASV is formu-
lated as:

LASV = − 1

n

n!

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
"N

j=1,j ∕=yi
es(cos(θj))

where θyi is the angle between the sample embedding xi with
corresponding speaker identity yi and the speaker prototype
Wyi . θj is the angle with all other L2−normalized speaker
prototypes stored in a trainable matrix W ∈ RD×N with D
indicating the embedding size. The margin penalty is indicated
with m. A scaling factor s is applied to increase the range of
the output log-likelihoods. During training, we set s = 30, and
m set 0.2.

The CM system also adopts four different types of end-to-
end systems: (i) AASIST [13]; (ii) AASIST-L (lightweight ver-
sion of AASIST); (iii) SE-ResNet-34-GPool, which the feature
encoder module adopts the same structure as the ASV system;
(iv) VGG-C-GPool, which is a compressed version of VGG-16
[27], containing only five convolutional layers. The input of the
first two systems are fed to raw waveforms of 64,600 samples
(≈ 4 seconds), the last two take 64-dimentional Mel-filterbanks
features as input and the graph module is the same as AASIST.
All the CM systems is trained to minimise a weighted cross en-
tropy (WCE) loss function, where the ratio of weights assigned
to bona-fide and spoofed trials are 9:1 to manage the data im-
balance in the ASVspoof 2019 LA training set.

3.3. Fusion and Calibration

We follow the greedy fusion scheme described in [38] to se-
lect the best system combination for our primary submission for
SASVC 2022. Fusion and calibration are performed with logis-
tic regression with the Bosaris toolkit [39] for multiple classi-
fiers improved overall SASV-EER on the ASVspoof 2019 LA
development data.

3.4. Evaluation metrics

System performance is assessed on the evaluation of SASVC
2022. The evaluation set is drawn from ASVspoof 2019 LA
evaluation partitions. Performance is reported using three types
of equal error rate (EER), including speaker verification (SV)-
EER, spoof (SPF)-EER and spoof aware speaker verification
(SASV)-EER. SV-EER describes the conventional ASV sys-
tem performance without considering the presence of presenta-
tion attacks. SPF-EER denotes the EER for CM system which
only consider whether an input is spoofed. SASV-EER de-
scribes overall performance, considering both speaker identity
and spoofing, which as the primary metric to evaluate the SASV
system performance.



Table 2: Performance of different systems on three different EERs (%) of SASVC 2022 development and evaluation partitions. Boldface
values are the best results.

System ID
ASV CM SV-EER SPF-EER SASV-EER

Architecture #Param Architecture #Param Dev Eval Dev Eval Dev Eval

Baseline1 ECAPA-TDNN 14M —– —– 1.88 1.63 20.30 30.75 17.38 23.83
Baseline2 Score-level Ensemble 32.88 35.32 0.06 0.67 13.07 19.31
Baseline3 Embedding-level Ensemble 12.87 11.48 0.13 0.78 4.85 6.37

1 ECAPA-TDNN 14M

AASIST 292K

1.49 1.04 0.09 1.47 0.79 1.26
2 SE-ResNet-34 7M 1.11 0.69 0.11 1.06 0.49 0.89
3 SE-Res2Net-50 10M 0.20 0.30 0.07 0.98 0.13 0.70
4 Res2NeXt-50 6M 0.43 0.37 0.07 1.21 0.20 0.86

5 ECAPA-TDNN 14M

AASIST-L 83K

1.62 1.23 0.13 1.26 0.84 1.25
6 SE-ResNet-34 7M 1.23 0.86 0.13 0.86 0.54 0.86
7 SE-Res2Net-50 10M 0.27 0.48 0.13 0.78 0.27 0.63
8 Res2NeXt-50 6M 0.54 0.54 0.13 0.99 0.34 0.80

9 ECAPA-TDNN 14M

SE-ResNet-34-GPool 816K

1.84 1.71 0.21 1.07 1.01 1.51
10 SE-ResNet-34 7M 1.35 1.47 0.20 0.95 0.77 1.33
11 SE-Res2Net-50 10M 0.61 1.14 0.20 0.91 0.47 1.02
12 Res2NeXt-50 6M 0.69 0.97 0.20 0.88 0.47 0.91

13 ECAPA-TDNN 14M

VGG-C-GPool 165K

1.68 1.68 0.13 0.90 0.97 1.33
14 SE-ResNet-34 7M 1.28 1.30 0.13 0.88 0.74 1.10
15 SE-Res2Net-50 10M 0.54 0.97 0.13 0.80 0.40 0.89
16 Res2NeXt-50 6M 0.67 0.93 0.13 0.75 0.54 0.86

Fusion 1 1+5+9+13 1.53 1.17 0.07 0.47 0.81 0.91
Fusion 2 2+6+10+14 1.09 0.91 0.07 0.24 0.47 0.63
Fusion 3 3+7+11+15 0.21 0.53 0.07 0.26 0.13 0.43
Fusion 4 4+8+12+16 0.43 0.50 0.07 0.29 0.27 0.45
Fusion 5 Fusion all single systems 0.19 0.51 0.06 0.32 0.07 0.45
Fusion 6 3+7+12+16 0.20 0.45 0.07 0.26 0.13 0.37

4. Results and Discussion
Table 1 compares effect of different score-level ensemble meth-
ods, the similarity score obtains from the normalized speaker
embeddings in the ASV system is directly summed to the CM
system score to achieve the best performance. Therefore, the
comparison of the performance of different systems in Table
2 is based on this score-level integration method for ensemble
ASV and CM systems.
Comparison with baseline systems. Table 2 presents a com-
parison of the performance with the baseline systems. We ob-
serve that the ensemble method of ASV and CM systems is
crucially important. All our systems greatly exceed the perfor-
mance of all baseline systems. SE-Res2Net-50 (ASV system)
and AASIST-L (CM system) are integrated as the best ensem-
ble system, achieves 0.63% on SASV-EER on the evaluation
set, while SV-EER and SPF-EER reach 0.48% and 0.78%, re-
spectively.
Comparison with standalone ASV systems. Table 2 com-
pares the performance differences of standalone ASV systems.
Res2Net-based ASV systems show better performance than
other extractors under different CM system architectures, and
the SE-Res2Net-50 outperforms others in terms of SV-EER and
SASV-EER. It further illustrates that the performance of ASV
system is important for overall SASV system.
Comparison with standalone CM systems. Comparing the
performance of different CM systems, the AASIST-L system
with a small amount of parameters has the best performance,
while the SE-ResNet-34-GPool system with a large amount of
parameters has the worst performance. At the same time, we
can see that the frequency domain model VGG-C-GPool and
the time domain model AASIST have comparable performance.

Comparison with fusion systems. Figure 2 also shows the per-
formance of multi-systems fusion. Compare systems (Fusion 1-
4), it can be seen that the importance of the ASV system perfor-
mance. We fuse all single ensemble systems (Fusion5) and the
optimal single ensemble systems (Fusion6), we can notice that
Fusion6 achieves the best performance, reaching 0.37% perfor-
mance on the eval set. Meanwhile, the performance results of
Fusion6 system as our primary submission results.

5. Conclusions
In this paper, we investigate a general and efficient norm-
constrained score-level ensemble method which jointly pro-
cesses the embeddings extracted by ASV and CM systems in
order to detect whether the test utterance is bonafide and be-
longs to the claim speaker. Furthermore, by exploring differ-
ent structural feature encoders for ASV and CM subsystems,
it is further verified that ensemble SASV system can be deliv-
ered better performance when both ASV and CM subsystems
are optimized. The effectiveness of our systems are verified us-
ing official trials of SASVC 2022, where we achieved 0.45%
SV-EER, 0.26% SPF-EER and 0.37% SASV-EER. It is worth
noting that our methods in this paper are general, which can be
highly efficient in practical applications.
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