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Abstract
In this paper, we provide description of our submitted sys-
tems to the spoof-aware speaker verification (SASV) Challenge
2022. The main objective of this challenge is to develop a
speaker verification system robust to both zero-effort imposter
access attempts and spoofing attacks. In order to achieve this,
we have trained two different ensembled models and an end-
to-end spoof-aware speaker verification system and fused their
scores to obtain the final speaker verification score. The submit-
ted system resulted in spoof-aware speaker verification equal
error rate of 2.48% on the evaluation set.
Index Terms: speaker recognition, voice spoof detection,
spoof-aware speaker verification, higher-order statistics pool-
ing, hybrid neural network, SASV 2022 Challenge

1. SASV Challenge 2022
The spoof-aware speaker verification (SASV) challenge pro-
vides a standard benchmark for evaluating speaker verifica-
tion systems on a spoof attack scenario. More specifically, the
SASV challenge aims to develop a new solution for speaker ver-
ification robust to both zero-effort imposter access attempts and
spoofing attacks.

For training the systems, the SASV challenge allows the
following datasets:

• VoxCeleb 2 [1],

• ASVSpoof 2019 LA train set [2],

• ASVSpoof 2019 LA development set [2].

The evaluation is done on the ASVSpoof 2019 LA au-
tomatic speaker verification (ASV) protocol [2], where three
equal error rates are measured:

• SASV-EER: the primary metric for the challenge. For
computing the SASV-EER, bonafide utterances from the
target speaker are considered as positive and the rest are
considered as negative.

• SPF-EER: the spoof countermeasure metric. For com-
puting the SPF-EER, bonafide utterances from the target
speaker are considered as positive and all spoof utter-
ances are considered as negative.

• SV-EER: the ASV countermeasure metric. For com-
puting the SV-EER, bonafide utterances from the tar-
get speaker are considered as positive and all non-target
bonafide utterances are considered as negative.

More details about the SASV challenge can be found in the
evaluation plan [3].

2. System description
In our submission, we have constructed 3 different spoof-aware
speaker verification systems and fused their scores together to
obtain the final spoof-aware speaker verification score.

2.1. Embedding fusion systems

In this section, we described the embedding fusion-based spoof-
aware speaker verification systems we have trained. The em-
bedding fusion system consists of 3 leakyReLU [4] hidden lay-
ers with 256, 128, 64 nodes respectively. The last hidden layer
is followed by a 2 noded output layer, where each node repre-
sents the positive and negative SASV scores respectively. The
embedding fusion system takes the embeddings extracted from
pre-trained anti-spoof counter measure system and speaker ver-
ification system as input. More specifically, the following em-
beddings are fed into the system:

• Enrollment embedding: the speaker model embedding
extracted from a pre-trained speaker verification system,

• Query embedding: the embedding of a test utterance ex-
tracted from a pre-trained speaker verification system,

• Countermeasure embedding: the embedding of a test ut-
terance extracted from a pre-trained anti-spoofing coun-
termeasure system.

The embedding fusion system is trained using the binary cross-
entropy loss function.

In our submission, we have trained two different embedding
fusion systems:

• Baseline: the baseline embedding fusion configuration
provided by the SASV challenge orgatizers, where the
fusion system was trained on top of embeddings ex-
tracted from a pre-trained ECAPA-TDNN [5] ASV sys-
tem and a AASIST [6] countermeasure system [3].

• HNN-ASV/HOSP-CM: Embedding fusion system
trained on top of embeddings extracted from a pre-
trained hybrid neural network (HNN) [7,8] ASV system
and a TDNN countermeasure system with higher order
statistics (HOSP) [9].

In both embedding fusion systems, the ASV network was pre-
trained on the VoxCeleb2 dataset and the countermeasure sys-
tem was pre-trained on the ASVSpoof2019 LA train set.

2.2. End-to-end spoof-aware speaker verification system

In addition to the embedding fusion systems, we have also
trained an end-to-end spoof-aware speaker verification system
(E2E-SASV). The end-to-end system is based on the ECAPA-
TDNN architecture [5], which takes the LFCC feature as in-
put. The ECAPA-TDNN system was pre-trained on the Vox-
Celeb2 dataset using AAM-Softmax [10], and finetuned on the
ASVSpoof2019 LA train set using a modified angular proto-
typical loss function [11], where the pairs with only spoof ut-
terances are excluded from the training process. Moreover, we
have applied a modified mixup regularization strategy during
training, where the synthetic samples created from interpolating
bonafide and spoof samples are considered as spoof samples.
After fine-tuning, cosine similarity between the enrollment and
test embeddings are computed.



Dev Eval
System SASV-EER [%] SPF-EER [%] SV-EER [%] SASV-EER [%] SPF-EER [%] SV-EER [%]
ECAPA-TDNN baseline [3] 17.38 20.30 1.88 28.83 30.75 1.63
Score-fusion baseline [3] 13.07 0.06 32.88 19.31 0.67 35.32
Embedding-fusion baseline [3] 4.85 0.13 12.87 6.37 0.78 11.48
Embedding-fusion baseline (our) 4.85 0.13 12.80 6.40 0.76 11.55
Our submission 2.43 0.07 4.99 2.48 0.65 3.80

Table 1: The development and evaluation set EERs of the baseline systems and our submission.

2.3. Score-level fusion

To produce the final scores for submission, we have fused
the scores generated from the Baseline, HNN-ASV/HOSP-CM,
and E2E-SASV systems. For the score-level fusion, we have
first normalized the individual scores using their respective de-
velopment set scores via Gaussian normalization. After the nor-
malization, the three scores were averaged and used as the final
decision score.

3. Result
Table 1 shows the primary SASV-EER metric along with the
SPF- and SV-EERs of our submitted system and the baselines
on the development and evaluation set. From the results, our
submitted system outperformed the baseline systems, achieving
a relative improvement of 61.07% in terms of EER compared to
the best performing baseline (i.e., Embedding-fusion baseline).

4. Conclusion
In this report, we described our submitted system on the SASV
2022 Challenge. In this challenge, we experimented with a
score-level fusion framework of two different embedding fu-
sion systems and an end-to-end spoof-aware speaker verifica-
tion system. Our submitted system outperformed all the base-
line systems, achieving a relative improvement of 61.07% in
terms of EER compared to the best performing baseline.
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