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Abstract
This paper describes our DKU-OPPO submission to the first
Spoofing-Aware Speaker Verification (SASV) Challenge. The
SASV challenge aims to build an ensemble system that si-
multaneously detects zero-effort impostor access attempts and
spoofing attacks from target speaker audios. We first split
the task into speaker verification and anti-poof tasks optimized
separately. We introduce ResNet34, SE-ResNet34, SimAM-
ResNet34 and ECAPA-TDNN models for speaker verification
systems, achieving state-of-the-art (SOTA) performance in this
field. For countermeasures systems, based on the AASIST-SAP
model, we propose two methods to improve the generalization
for unseen attack methods 1) Embedding Random Sampling
Augmentation(ERSA). 2) One-Class Confusion Loss(OCCL).
The AASIST-ASP mounted with OCCL model achieves 0% and
0.36% SPF-EER on the development and evaluation set. Fi-
nally, we compare and propose different fusion strategies, e.g.,
score-sum ensemble and cascade ensemble. The final submitted
cascade system obtains the 0.209% SASV-EER on the evalua-
tion set.
Index Terms: Anti-spoofing, Speaker verification, One-class

1. Introduction
Even though the performance of Automatic Speaker Verifica-
tion(ASV) has improved dramatically during the past few years,
the lack of consideration for the reliability of the ASV sys-
tem makes it difficult to be applied in real-world scenarios.
The spoofing countermeasure (CM) system is normally used
to detect spoofing audios, which could ensure the security of
ASV systems[1]. The ASVspoof challenge [2] has greatly con-
tributed to the improvement of CM system performance. Al-
though CM is framed as a subtask derived from ASV, most of
the research on these two tasks has been carried out indepen-
dently in previous works. This dichotomy may lead to CM
systems not being well suited to some ASV scenarios due to
overfitting and domain mismatch. To address this gap, the or-
ganizers of the ASVspoof Challenge proposed the tandem de-
tection cost function (t-DCF) metric [3], which is highly corre-
lated to both the ASV system and the CM system, to replace
the equal error rate (EER) metric, which relied only on the CM
system itself. However, the ASVspoof Challenge still focuses
on designing and optimizing a stand-alone CM system to calcu-
late the min t-DCF metric in combination with a given official
black-box ASV system. This prevents participants from im-
proving the overall performance by enhancing the ASV system
or leveraging joint optimization. Therefore, the first spoofing-
aware speaker verification (SASV) challenge [4], which aims

to promote the development of integrated systems that can per-
form both ASV and CM, has been held this year. The key goal
of this challenge is to build a combined system that can detect
both zero-effort impostor access attempts and spoofing attacks
from target speaker audios simultaneously.

The first SASV challenge focuses on logical access spoof-
ing attacks (LA), such as text-to-speech (TTS) and voice con-
version (VC) rather than physical access spoofing attacks (PA).
Due to the lack of corpora and uncertainty of application
prospects, few studies involving joint ASV and CM optimiza-
tion have been conducted in the past. As mentioned in the of-
ficial evaluation plan [4], jointly optimized solutions can gen-
erally be classified into two categories. The first is ensemble
systems based on a fusion of separate ASV and CM systems.
Gomez et al. [5] used an embedding concatenation strategy to
construct an ensemble classification system. Another approach
is to build a single integrated system. Li et al. [6] proposed a
single model using multi-task learning and contrastive loss.

Similar to the score combination approach with SASV
baseline 1, we investigated and implemented a dual-system
score cascade model, which effectively combines the classifi-
cation scores of ASV and CM systems and decreases SASV-
EER to 0.21%. Despite all the room for innovation, the cascade
model has beaten all the innovative solutions we have tried,
which means that the cascade system is still feasible without
considering the computational overhead and real-time require-
ments. Also, we investigate several innovative schemes, includ-
ing random embedding sampling augmentation and one-class
confusion loss function, both of them operate effectively to im-
prove the CM single-system performance.

The rest of this paper is organized as follows. In section 2,
our submitted system for the SASV challenge is represented,
which mainly focuses on network structure and score fusion
strategies. Detailed implementation information of the use of
datasets and hyperparameters of models is provided in Section
3. Section 4 describes and discusses the results based on our
submissions in the progress phase. Conclusions are provided in
Section 5.

2. System Description

This section describes our submitted system for the first SASV
challenge. Overall, we first constructed and improved our ASV
and CM systems with SOTA models separately and fused scores
from two systems in the combined system similar to Baseline 1.



2.1. ASV subsystem

In this part, we will introduce four different structure
speaker verification systems, including the ResNet, SE-ResNet,
SimAM-ResNet and ECAPA-TDNN models.

2.1.1. ResNet

For the ResNet module, we adopt the same structure as [7]. The
network structure contains three main components: a front-end
pattern extractor, an encoder layer, and a back-end classifier.
The ResNet34[8] structure is employed as the front-end pattern
extractor, which learns a frame-level representation from the in-
put acoustic feature. The widths (number of channels) of the
residual blocks are {32, 64, 128, 256}. The global statistic pool-
ing (GSP) layer, which computes the mean and standard devia-
tion of the output feature maps, can project the variable length
input to the fixed-length vector. The output of a fully connected
layer with 128 dim followed after the pooling layer is adopted
as the speaker embedding layer. The ArcFace[9] (s=32,m=0.2)
which could increase intra-speaker distances while ensuring
inter-speaker compactness is used as a classifier .

2.1.2. ResNet mounted with attention module

The attention mechanisms achieve great success in the ASV
field. Following our previous work[10], we adopted the SE-
ResNet and SimAM-ResNet for speaker verification systems.
The Squeeze-and-Excitation (SE) module [11] employs the
channel-wise attention to capture the task-relevant features. The
SimAM is designed based on some well-known neuroscience
theories and generates 3D attentions weights for the feature
maps. Different from the ResNet system, we increase the
widths from {32, 64, 128, 256} to {64, 128, 256, 512}. The en-
coding layer is based on attentive statistics pooling (ASP) [12].
The speaker embedding is with a dimension of 256. The clas-
sifier is the same as with the ResNet system, and the detailed
configuration of the neural network is shown in [10].

2.1.3. ECAPA-TDNN

The ECAPA-TDNN network[13] achieved great success in
speaker verification in recent years. For this model, 1024 fea-
ture channels were used to scale up the network. The dimension
of the bottleneck in the SE-Block is set to 256. The front-end
feature extractor is followed by an attentive statistics pooling
layer[12] that calculates the mean and standard deviations of
the final frame-level features. The classifier is also the same as
the ResNet system.

2.2. CM subsystem

This subsection describes the basic network structure of our
CM subsystems and the One-Class Confusion Loss and the Em-
bedding Random Sampling Augmentation we proposed in this
challenge.

2.2.1. Basic network architecture

We use AASIST [14], which is also used in the baseline as
the backbone network. AASIST has a RawNet2 based en-
coder and a graph attention network based graph module. AA-
SIST utilizes raw waveforms as input to learn meaningful high-
dimensional spectro-tempora feature maps and then extract
graph nodes of feature maps in temporal and frequency domains
respectively. With a stack node that learns information from

all nodes, the final CM embedding is attained by concatenat-
ing various nodes’ mean and maximum values. Moreover, as
mentioned in the paper [15], Tak et al. provide an improved
architecture in which the max pooling layer of the encoded fea-
ture maps is replaced by 2D self-attentive pooling [16], named
AASIST-SAP in this paper.

2.2.2. One-class confusion loss function

Although the basic models AASIST and AASIST-SAP obtain
great results in the development and evaluation set, there is a
great performance gap between the development and evaluation
set since the attack algorithms are not overlapped. Therefore,
it is necessary to reduce the domain gap. Although the domain
of the attack algorithm is unpredictable, the space of bonafide
audios is unique. Inspired by one-class learning [17, 18], we
proposed the one-class confusion loss which is similar to pair-
wise confusion loss [19].

The binary cross-entropy loss can be defined as follows:

Lce =
∑
i

−(yi log(pi) + (1− yi) log(1− pi))

where yi ∈ {0, 1} is class label and pi is the probability output
of classifier. The anti-spoof model is trained using a combined
objective with the cross-entropy loss and the proposed one-class
confusion loss, which is defined as:

Locc =
∑
i

∑
j 6=i

||ei − ej ||2

where ei denotes the embedding vector extracted from the
bonafide audios. The purpose of this loss function is to make
the Euclidean distance of all real samples more compact in the
embedding space. Since the attacks audios are unknown, the
one-class confusion loss is only applied on bonafide audios dur-
ing the training process. Therefore, the final combination loss
function is defined as follows:

L = Lce + λLocc

where lambda is a constant hyperparameter. It is worth men-
tioning that not all our experiments use combination loss.

2.2.3. Embedding random sampling augmentation

Considering that the evaluation set contains many unseen logi-
cal attacks [20], we propose a fine-tuning embedding data aug-
mentation strategy that aims to improve the robustness of the
model for unknown scenarios inspired by [21]. The key idea
of this method is to randomly sample from the boundary spoof
Gaussian distribution, which may be closer to bonafide audios.
Firstly, we initialize the embedding centers of bonafide audio
and each type of spoof audio in the development set separately
based on the pre-trained model. The boundary embedding cen-
ters of each type of spoof audio are defined as the average of
the bonafide embedding center and spoof embedding centers.
During fine-tuning, the boundary centers are dynamically up-
dated based on the spoof embedding center of current iteration
samples. Then we randomly generated samples From N(µ̂,Σ)
where N is a Gaussian distribution, µ̂ is the boundary spoof
embedding center and Σ is the covariance matrix of spoof em-
beddings calculated in advance. After each 5 epoch training,
the mean and covariance matrix of embedding centers will be
updated during validation. A more detailed description can be
found in 1,



Algorithm 1 Framework of embedding random sampling aug-
mentation algorithmic.

Input:
The training, development data and labels, Xt Yt Xd Yd;
The pre-trained embedding extractor M ;
The pre-trained classifier C;

Output: Embedding extractor M and classifier C;
embddev ←M(Xd)
µb ← E[embddev|Yd = bonafide]
µs[A01:A06] ← E[embddev|Yd = spoof[A01:A06]]
µ̂s[A01:A06] ← (µb + µs[A01:A06])/2
Σs ← cov(embddev|Yd = spoof)
for i ∈ [1, T otalEpoch] do

if i % 5 then
Update µ̂s[A01:A06], σs

end if
for x, y in Dataset(Xt, Yt) do
e←M(x)
µb ← E[e|y = spoof ]
µbs ← µ̂s[A01:A06] ∗ α+ µb ∗ (1− α)
eg ∼ N(µbs,Σs) ,yg ← spoof
loss←Lce(C(eg),yg) + Lce (C(e),y)

end for
end for

2.3. Combined system

2.3.1. Score-fusion system

Baseline 1 generates the final SASV score by simply score sum.

Sfus = Scm + Ssv

where Scm denotes the CM system score and Sasv denotes the
ASV system score. There is great numerical variation between
the scores of the baseline ASV system and the CM system.
Thus, we explore normalized score multiplication in order to
generate the SASV score with a more rational distribution [22].

Sfus = σ(Scm)× σ(Ssv)

where σ denotes sigmoid normalization. Moreover, we also
adopt Bosaris[23] for score calibration.

Sfus = Wcm ∗ Scm +Wsv ∗ Ssv

2.3.2. Cascade systems

Since both current ASV modules and CM modules we trained
performing well and work independently, we explore building a
cascade ensemble system. As is shown in Figure 1, the cascade
system consists of two tandem modules: a) the first module is
hard decisions based thresholds, the thresholds are determined
by the equal error rate (EER) on the development set; b) the
second module is soft decisions that the first module result turns
the score. For example, when the score of the first module af-
ter hard decisions is negative, the corresponding value of the
second score is reset to the minimum score of the development
set. That is means that once the test audio is determined to
be negative by one module, the outcome of another module is
meaningless.

For cascade system, two options are considered in this pa-
per: the first is ASV module followed by CM module, named
Cascade-ASV-CM; and the other is CM module followed by
ASV module, named Cascade-CM-ASV. The thresholds of the

Figure 1: The illustration of the ASV followed by CM cascade
system. ε represents the minimum CM score in the development
set. The CM followed by ASV cascade system is also achieved
by exchanging ASV and CM system positions

first system were determined by the equal error rate (EER) on
the development set.

3. Experimental setup
3.1. Data usage and evaluation metrics

All datasets we used for training and validation are
ASVspoof2019 [20] LA train partition, ASVspoof2019 LA
development partition, and VoxCeleb 2 [24] as requested by
the organizers. The ASVspoof2019 LA database consists of
bonafide and spoof audios. Though the database has both
speaker and spoofing labels, it was generally only used for voice
anti-spoofing due to the low number of total speakers. The Vox-
Celeb 2 database contains 1128246 audios from 6112 speakers
and was widely used for ASV training. The official SASV eval-
uation trial consists of audios from ASVspoof2019 LA evalua-
tion partition, with unseen logical access spoofing attacks com-
pared with audios in the train and development partitions.

The SASV-EER, which represents the equal error rate be-
tween target samples and both nontarget and spoof samples,
is set as the primary metric. The SPF-EER and SV-EER are
adopted as secondary metrics. Those two metrics only consider
spoof negative samples and nontarget negative samples respec-
tively.

3.2. Domain mismatch between ASVspoof2019 LA and
VoxCeleb 2

Although the baseline AASIST-based CM system has excellent
performance on the ASVspoof2019 evaluation set, we found
that it performs poorly on VoxCeleb 2. Most bonafide audios in
VoxCeleb 2 will be classified as spoof audios. We summarize
two reasons that may lead to this phenomenon

1. Most of the audio in the VoxCeleb contains various
noises and has been coded and transcribed.

2. The CM model trained based on the ASVspoof2019
LA dataset may learn the priori information of silent
segments[25].

There are great domain mismatches between ASVspoof2019
LA and VoxCeleb 2 datasets, which makes it difficult to im-
prove the performance of the CM system using VoxCeleb 2
dataset. Hence, by pre-trained model self-adaptive filtering,
20000+ domain-matched bonafide audios have been selected
from VoxCeleb 2 dataset.



3.3. Model setup

3.3.1. ASV subsystem

For feature extraction, logarithmical Mel-spectrogram is ex-
tracted by applying 80 Mel filters on the spectrogram computed
over Hamming windows of 20ms shifted by 10ms. We adopt the
SOTA ASV models, namely ResNet34, SimAM-ResNet34 and
ECAPA-TDNN, as the ASV system. The on-the-fly data aug-
mentation [26] is employed to add additive background noise
or convolutional reverberation noise for the time-domain wave-
form. The MUSAN [27] and RIR Noise [28] datasets are used
as noise sources and room impulse response functions, respec-
tively. To further diversify training samples, we apply amplifi-
cation or playback speed change (pitch remains untouched) to
audio signals. Also, we apply speaker augmentation with speed
perturbation [29, 30, 31]. We adopt the Reduceonplateau learn-
ing rate (LR) scheduler with 0.1 initial LR. The SGD optimizer
is adopted to update the model parameters.

3.3.2. CM subsystem

In contrast to the baseline training strategy, our trained
AASIST-ASP network receives random length audio between
3-5 seconds as input. The initial learning rate is 0.001 with a Re-
duceonplateau learning ratescheduler. Adam optimizer is used
to update the weights in models. The embedding random sam-
ple augmentation is only used during fine-tuning with 2 gener-
ated embeddings per center. Since there are 6 boundary spoof
embedding centers, there will be 12 generated embeddings per
batch. The batch size is set as 64 in this phase. And for the
one-class confusion loss, λ is set as 1 during training.

4. Results and discussion
4.1. Results on ASV system

Table 1 reports the results of different speaker verification mod-
els. Our employed models achieve SOTA result on the Vox-
Celeb1 original test set. In addition, our models outperform the
baseline system on the SV task. The ResNet with statistic pool-
ing achieves the best single model performance. Since the at-
tention mechanism relies on the large-scale data drive and easy
overfits on the target domain data, the generalization of ResNet
with statistic pooling is better than other models.

Table 1: The performances of different speaker verification sys-
tems on the VoxCeleb1 original test set and SASV set.

Model Vox-O EER[%] SV-EER[%]

Dev Eval

ECAPA (Baseline) - 1.86 1.64

ResNet GSP 0.851 0.135 0.192
SE-ResNet34 ASP 0.776 0.404 0.410

SimAM-ResNet34 ASP 0.643 0.404 0.252
ECAPA-TDNN 0.734 0.225 0.228

4.2. Results on CM system

Table 2 shows the anti-spoofing performance of different CM
single systems. It can be seen from the table that the AASIST
based model achieves a great performance improvement by re-
placing the max pooling layer with ASP. In addition, the model

Table 2: Comparison of different single CM systems based
on SPF-EER used in SASV challenge. The ERSA represents
embedding random sample augmentation while the OCCL de-
notes training with one-class confusion loss respectively. The
Vox-sub represents sub-bonafide audios selected from VoxCeleb
2 as mentioned in Sec 3.2

Model Data SPF-EER[%]

Dev Eval

AASIST(Baseline) 19LA 0.07 0.67

AASIST-SAP[15] V1 19LA 0.067 0.570
AASIST-SAP+ERSA 19LA 0.067 0.510
AASIST-SAP[15] V2 19LA+ Vox-sub 0.049 1.564

AASIST-SAP+OCCL 19LA + Vox-sub 0.000 0.360

achieves a further generalizability improvement in the evalua-
tion set by fine-tuning with the embedding random sampling
augmentation strategy despite a little performance degradation
in the development set. It is worth mentioning that although
we extracted the VoxCeleb subset using adaptive filtering of the
pre-trained model, simply adding these bonafide samples for
the training set did not seem to work. The addition of the one-
class confusion loss effectively solves this phenomenon, and the
model’s overall performance is further enhanced. This improve-
ment may be attributed to the fact that this loss function makes
the Euclidean distances between embeddings of bonafide au-
dios in VoxCeleb 2 and ASVSpoof2019 LA closer, and thus the
bonafide embedding space is more compact.

4.3. Results on ensemble system

The results of our experiments are summarized in Table 3,
which include the baseline systems, the SV sub-systems, the
CM sub-systems, the score fusion systems and the cascade sys-
tems.

4.3.1. Score fusion system performance

As can be seen from the score fusion section of the table, the
simple summation method performs poorly due to the differ-
ences among the score distributions of the different systems.
This problem can be effectively mitigated by normalizing the
scores through the sigmoid function and multiplying them to-
gether [22]. The optimal result in this part is also obtained by
this method.

4.3.2. Cascade system performace

The cascade systems section of the table shows only partial re-
sults from our cascade combinations. We have noted that the
AASIST CM system in the baseline is highly complementary
to the systems trained by ourselves. Furthermore, we observe
that while the Cascade-CM-ASV approach performed better on
the development set, the Cascade-ASV-CM approach generally
performed better on the evaluation set, possibly due to the fact
that the development set has appeared in the training data of
CM systems. In the other words, for unknown scenarios, the
SV model EER will be lower and more suitable as the hard de-
cision module in a tandem system. Therefore, we ultimately
chose to submit the results of the Cascade-ASV-CM method.



Table 3: Performance of different systems evaluated in the SASV Challenge. Due to a large number of combinations, only selected
combinations are listed. The σ denotes sigmoid normalization and × denotes multiplication.

ID Model Fusion SV-EER[%] SPF-EER[%] SASV-EER[%]

Dev Eval Dev Eval Dev Eval

1 AASIST(CM, Baseline) - 46.01 49.24 0.07 0.67 15.86 24.38
2 ECAPA-TDNN (SV, Baseline) - 1.86 1.64 20.28 30.75 17.31 23.84

Baseline 1 (official) Sum 32.89 35.33 0.07 0.67 13.06 19.31
Baseline 2 (official) Back-end ensemble 7.94 9.29 0.07 0.80 3.10 5.23

CM System
3 AASIST-SAP V1 - 48.543 48.464 0.067 0.570 16.298 25.344
4 AASIST-SAP+ERSA - 47.304 47.188 0.067 0.510 15.963 24.655
5 AASIST-SAP V2 - 46.968 50.575 0.049 1.564 16.212 25.943
6 AASIST-SAP+OCCL - 50.644 55.161 0.000 0.360 16.328 26.872

ASV System
7 ResNet34 GSP - 0.135 0.192 14.084 23.069 11.616 17.449
8 SE-ResNet34 ASP - 0.404 0.410 11.540 22.402 9.745 16.888
9 SimAM-ResNet34 ASP - 0.404 0.252 12.011 22.500 10.512 16.994
10 ECAPA-TDNN - 0.225 0.228 14.420 21.899 12.354 16.795

Score-fuse ASV & CM
ID 7 & ID 1 Sum 30.526 33.800 0.054 0.484 11.725 19.423
ID 7 & ID 1 σ and × 1.011 4.134 0.067 0.512 0.670 3.557
ID 7 & ID 1 Bosaris 0.520 0.917 0.130 1.226 0.266 1.124

ID 7 & ID 6 Sum 0.135 0.410 0.000 0.261 0.128 0.410
ID 7 & ID 6 σ and × 0.135 0.357 0.004 0.332 0.132 0.354
ID 7 & ID 6 Bosaris 0.135 0.353 0.004 0.344 0.131 0.353

ID 7+8+10 & ID 6 Sum 0.173 0.298 0.004 0.288 0.100 0.300
ID 7+8+10 & ID 6 σ and × 0.173 0.291 0.004 0.322 0.100 0.310
ID 7+8+10 & ID 6 Bosaris 0.173 0.285 0.004 0.451 0.100 0.354

ID 7 & ID 1+3+4+6 Sum 40.066 42.011 0.009 0.225 14.278 22.432
ID 7 & ID 1+3+4+6 σ norm and Sum 0.202 0.417 0.000 0.223 0.135 0.354
ID 7 & ID 1+3+4+6 σ and × 0.202 0.354 0.009 0.223 0.135 0.335
ID 7 & ID 1+3+4+6 Bosaris 47.237 47.318 0.000 0.242 15.682 24.009

ID 7+8+9+10 & ID 1+3+4+6 σ and × 0.269 0.345 0.009 0.223 0.107 0.282
ID 7+8+10 & ID 1+6 σ and × 0.202 0.317 0.000 0.186 0.103 0.261

Cascade ASV & CM

ID 7 & ID 6 Cascade-ASV-CM 0.135 0.205 0.135 0.410 0.135 0.391
Cascade-CM-ASV 0.135 0.410 0.000 0.298 0.128 0.410

ID 7+8+10 & ID 1+3+4+6 Cascade-ASV-CM 0.202 0.462 0.202 0.219 0.202 0.223
Cascade-CM-ASV 0.173 0.242 0.004 0.308 0.100 0.261

ID 7+8+10 & ID 1+4+6 Cascade-ASV-CM (best) 0.202 0.462 0.202 0.186 0.202 0.209
Cascade-CM-ASV 0.173 0.242 0.000 0.230 0.096 0.242

5. Conclusion
In this paper, we describe our DKU-OPPO submitted systems
for the first SASV challenge. Two ensemble solutions are dis-
cussed in the paper, the first being a score fusion strategy where
we obtained 0.27% SASV-EER on the evaluation set using
sigmoid normalization followed by multiplication. The second
solution is building a cascade-based system, which ultimately
achieved 0.21% EER on the evaluation set. Moreover, we pro-
pose an embedding random sampling fine-tuning strategy and
the one-class confusion loss, both of which improve the perfor-
mance of the CM subsystem. Taking the submitted system as
the pivot, we will further explore the differences between the

various combinatorial strategies and a single system structure
that outperforms cascaded systems.
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