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1 Introduction

The performance of automatic speaker verification (ASV) systems has improved dramatically in recent
decades [1—4]. Even for some in the wild scenarios, state-of-the-art systems can deliver equal error
rates (EERs) of less than 1% [5,6]. However, these impressive results are typically derived without
the consideration of spoofing attacks, namely specially crafted utterances generated by adversaries in
order to deceive the ASV system and to provoke false accepts. Even state-of-the-art ASV systems
can be vulnerable to spoofing attacks generated using speech synthesis / text-to-speech (TTS), voice
conversion (VC) or replay attacks. Some such attacks can degrade ASV reliability considerably [7].

Led by the ASVspoof initiative and corresponding challenge series, countermeasure (CM) systems
have hence been developed in order to help detect and deflect spoofing attacks [3—10]. In the case of
a logical access, telephony scenario involving only TTS and VC attacks, the best performing spoofing
CM systems can deliver EERs of less than 2% [11-21].

This measure of performance only reflects that of the CM, however, whereas it is the reliability of
the ASV system which is of primary importance. This can remain poor, even when it operates in tan-
dem with a strong CM [22]. While the minimum tandem detection cost function (t-DCF) [23] reflects
the impact of spoofing attacks and CMs upon the ASV system, the ASVspoof challenge series focuses
on the development of CMs for a fixed ASV system with a pre-determined operating point. We argue
that better performance can be delivered when CM and ASV subsystems are both optimised. Herein
lies the difference between ASVspoof and the new Spoofing-Aware Speaker Verification (SASV) chal-
lenge. SASV extends the focus of ASVspoof upon CMs to the consideration of integrated systems
where both CM and ASV subsystems are optimised to improve reliability.

2 Challenge objectives

The goal of the new SASV challenge is hence to further improve robustness to both zero-effort impostor
access attempts and spoofing attacks by providing a framework to support the optimisation of CM
and ASV systems operating in tandem and, ultimately, facilitate the development of single integrated
systems. With only relatively little previous work in this direction [24-28], the objectives of the first
challenge are to:

e bridge the gap between the study of ASV and CM systems, and corresponding research com-
munities;

e extend the ASV scenario to take spoofing attacks into account;
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e promote the development of ensemble models towards integrated SASV solutions which operate
upon speaker and anti-spoofing embeddings;

e encourage the development of single models which have the capacity to reject both utterances
spoken by different speakers as well as spoofed utterances.

3 SASV solutions

SASV solutions can take the form of two different processing pipelines.

3.1 Ensemble solutions based upon separate ASV and CM systems

Ensemble SASV solutions are assumed to comprise pre-trained ASV and CM subsystems. Different
ensemble techniques can be used to combine embeddings/scores produced by the ASV subsystem with
embeddings/scores produced by the CM subsystem.

Potential solutions include, e.g.:

e score-sum ensembles using cosine similarity scores generated from speaker embeddings produced
by a pre-trained ASV subsystem and the scores produced by a pre-trained CM subsystem;

e ensemble models which operate upon three different embeddings, namely a pair of speaker

embeddings extracted from enrolment and test utterances and a CM embedding.

3.2 Integrated single system solutions

SASV solutions can also take the form of an integrated, single system.
Potential solutions include, e.g.:

e deep neural networks (DNNs) trained in multi-task fashion using a pair of output layers, namely
one for speaker identification and another for spoofing detection;

e end-to-end systems with additional objective functions applied to intermediate, hidden layers.

4 Metrics
SASV performance will be assessed using the classical EER (SASV-EER) as the primary metric.
Identical to the metrics used in [25,29], the SASV-EER does not distinguish between different speaker

(zero-effort, non-target, or impostor) access attempts and spoofed access attempts. Additional insights
into SASV performance can be gained from comparisons to more traditional estimates of speaker
verification performance (SV-EER) estimated from a set of target and non-target trials, in addition to
performance when the same system is subjected to spoofing attacks (SPF-EER) whereby non-target
trials are replaced with spoofed trials. All three EER estimates reflect ASV performance, with both
SV-EER and SPF-EER being estimated using different subsets of the full set of trials (i.e., protocol)
used for estimating the SASV-EER. All SASV metrics are hence different to the EER metric used for
ASVspoof challenges. The latter is estimated using a CM protocol, not an ASV protocol; the SPF-
EER is measured when an SASV system processes pairs of enrolment and test utterances whereas the
EER in the case of ASVspoof challenges is measured when a standalone CM system processes single
utterances. Table 1 illustrates the ground-truth labels and trial subsets used to measure each of the
three different EERs to be used for the SASV challenge.



Table 1: Description of EERs. The system involves enrolment utterance(s) and a test utterance.
Enrolment utterance(s) is bona-fide (i.e. genuine) and test utterance belongs to either of the three

types.

Target Non-target Spoof
SV-EER + -
SPF-EER + ;
SASV-EER + - -

5 Protocols
Participants will be provided with two protocols:

e Development protocol:
ASVspoof2019_LA _asv_protocol/ASVspoof2019.LA.asv.dev.gi.trl.txt

e Evaluation protocol:
ASVspoof2019_LA_asv_protocol/ASVspoof2019.LA.asv.eval.gi.trl.txt

Both protocols, which list target, non-target and spoofed trials, can be downloaded from the
SASV 2022 GitHub repository at https://github.com/sasv-challenge/SASVC2022_Baseline or
from ASVspoof challenge resources. The first is to be used for the development of SASV solutions.
The second is to be used only for final performance evaluation. Both protocols are identical to those
used for the ASVspoof 2019 LA challenge, albeit by the organisers for ASV experimentation instead of
by participants for CM experimentation. This is hence the first time that the two protocols have been
used by the participants of any common challenge. One thing worth noting about the protocols are
that multiple enrolment utterances exist for each trial; this would be more familiar to researchers in
the ASV community where speaker embeddings from each enrolment utterance is averaged to compose
the final enrolment speaker embedding.

6 Baselines

We provide two baseline systems, one for each solution strategy described in Section 3.1. Each system
is based upon the same pre-trained ASV and CM subsystems described further below. Reproducible
software for each subsystem and baseline are also available from the SASV 2022 GitHub repository
from which participants can download packages for:

o the extraction of speaker embeddings and CM embeddings using corresponding pre-trained sub-
systems;

e the estimation of SASV-EER, SV-EER, and SPF-EER metrics;

e Baselinel and Baseline2 SASV solutions described in Section 6.4.

6.1 ASV subsystem

We adopt the ECAPA-TDNN [5] pre-trained ASV subsystem using the VoxCeleb2 dataset [30]'. The
system leverages several recent advances in deep learning, achieves state-of-the-art performance for
the VoxCeleb1-O (VoxCelebl test set) protocol [31] and is widely adopted in the community. The
architecture is based upon Res2Net with a squeeze-excitation module [32,33]. Participants are referred
to [5] for full details.

1We use the implementation available at https://github.com/TaoRuijie/ECAPATDNN.
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Results for the ECAPA-TDNN are illustrated in the first row of Table 2. The SV-EER of 0.83%
demonstrates that non-target trials are reliably rejected without causing target trials to be rejected
too, even though there is domain mismatch between the ASVspoof data and the VoxCeleb2 data used
for ASV training. The SPF-EER of 29.3% confirms that a conventional ASV system is vulnerable to
spoofing attacks, a result confirmed by the SASV-EER of 22.4%.

6.2 CM subsystem

The baseline CM subsystem is the AASIST model described in [20]2. ASVspoof2019 LA train par-
tition is used for training the system [7]. It is based upon an integrated spectro-temporal graph
attention network which operates directly on raw-waveform inputs and is used for the extraction of
CM embeddings. Participants are referred to [20] for further details.

Table 2: The three different EERs (%) for the SASV 2022 development and evaluation partitions.
SASV-EER for all baselines are calculated using the entire protocol that includes trials used to measure
the SV-EER (target vs. non-target) and those used to measure the SPF-EER (target vs. spoof).
Results shown for a conventional ASV system (ECAPA-TDNN) and the two baseline solutions.

SV-EER SPF-EER SASV-EER

Dev  Eval Dev Eval Dev Eval
ECAPA-TDNN 1.24  0.83 19.04 29.32 16.21 22.38
Baselinel (score-sum) 14.89 351 694 050 2.09 19.15

Baseline2 (back-end ensemble model) 14.38 16.01 0.01 1.23 541 8.75

6.3 Baselinel: score-sum ensemble

Baselinel involves a simple sum of the scores produced by the ASV and CM subsystems. Thus, no data
is used for this baseline as it does not involve any training nor fine-tuning. Results are shown in the
second row of Table 2. The Baselinel SASV-EER of 19.2% corresponds to a relative reduction of 10%
compared to the ECAPA-TDNN solution (22.4%). However, while Baselinel improves performance
when assessment includes spoofed trials, performance in the case of a typical ASV assessment scenario
is poor; the SV-EER of the ECAPA-TDNN of 0.8% increases to 35.1%. This degradation is caused by
summing of non-calibrated scores, each derived using different techniques (e.g., the cosine similarity
for ASV scores but the DNN softmax output for CM scores). The back-end model ensemble strategy
of Baseline2 is proposed as a potentially better solution.

6.4 Baseline2: back-end model ensemble

Baseline2 involves the fusion of three embeddings: one extracted from an ASV enrolment utterance
using the ECAPA-TDNN system; a second extracted in identical fashion from a test utterance; a
third extracted from the same test utterance using the AASIST spoofing CM. The model is a vanilla
multi-layer perceptron with three hidden layers, trained using the ASVspoof2019 LA train partition.

2We used the implementation available at https://github.com/clovaai/aasist for CM embedding extraction.
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7 Training datasets
Participants are permitted to use the following datasets:

e ASVspoof 2019 LA train partition [7];
e ASVspoof 2019 LA development partition [7];
e VoxCeleb 2 [30].

While participants can utilise the above data as they wish, it is stressed that ASVspoof 2019 LA
train and development partitions were originally intended for the training and development of spoofing
CMs. Since ground-truth speaker labels are available for the ASVspoof 2019 LA database, it can also
be used for the training and development of ASV systems. The VoxCeleb 2 database was designed
for ASV experimentation; it does not contain spoofed data. The use of data from the ASVspoof 2019
LA evaluation partition for training or development purposes is strictly prohibited.

The ASVspoof 2019 LA dataset can be downloaded at https://datashare.ed.ac.uk/handle/
10283/3336. The VoxCeleb2 dataset can be downloaded at https://www.robots.ox.ac.uk/~vgg/
data/voxceleb/vox2.html. The use of any additional datasets is permitted, but only if they do not
contain recording of speech (e.g., Musan [34] and the Room Impulse Response and Noise Database [35].

8 Registration process

Participants are required to register by completing and submitting the registration form available at:

e https://forms.gle/htoVnog34kvs3ash6

9 System descriptions

Each participant/team is requested to submit a brief system description formatted according to the
INTERSPEECH 2022 paper template together with their challenge submission. Instructions for
challenge scores/results submission will follow in due course. Submitted system descriptions are
expected to report the SASV-EER for both development and evaluation protocols as well as the
corresponding SV-EER and SPF-EER. System descriptions will not be peer-reviewed and there is no
page limit. After the challenge is finished, rankings accompanied by submitted system descriptions
will be made publicly available at the challenge webpage:

e https://sasv-challenge.github.io

Participants may choose anonymous team names and also to anonymise their system description.

10 Paper submission

We aim to present SASV 2022 challenge results at a Special Session at INTERSPEECH 20222 to
which participants are invited to submit their contributions.

Shttps://interspeech2022.org
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11 Important Dates

January 19, 2022: Release of evaluation plan

March 10, 2022: Results submission

March 14, 2022: Release of participant ranks

March 21, 2022: INTERSPEECH Paper submission deadline

March 28, 2022: INTERSPEECH Paper update deadline

June 13, 2022: INTERSPEECH Author notification

September 18-22, 2022: SASV challenge special session at INTERSPEECH
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